
Errata

Title & Document Type:

Manual Part Number:

Revision Date:

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-
Packard's former test and measurement, semiconductor products and chemical analysis
businesses are now part of Agilent Technologies. We have made no changes to this
manual copy. The HP XXXX referred to in this document is now the Agilent XXXX.
For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We’ve added this manual to the Agilent website in an effort to help you support your
product. This manual provides the best information we could find. It may be incomplete
or contain dated information, and the scan quality may not be ideal. If we find a better
copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available
product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide
you to any available information. Our service centers may be able to perform calibration
if no repair parts are needed, but no other support from Agilent is available.

Christina Samii
71600B Series of Gbit/s Testers Programming Manual

Christina Samii

Christina Samii
 71600-90006

Christina Samii
 March 1, 1992

HP 716OOB Series of Gbit/s Testers
Programming Manual r-..-.-..---. _-..

SERIAL NUMBERS

This manual applies directly to:

HP 70841B 0.1-3 Gbit/s Pattern Generator with serial number(s) prefixed 3136U.

HP 70842B 0.1-3 Gbit/s Error Detector with serial number(s) prefixed 3136U.

For important information about serial numbers, refer to SERIAL NUMBER
INFORMATION in the HP 71600B Series Installation and Verification manual.

Serial number information for other elements in the system is contained in the
following manuals:

Display - see HP 70004A Installation and Verification Manual
Mainfra.me - see HP 70001A Installation and Verification Manual
Clock Source - see HP 70311A/70312A Operating and Calibration Manual

@Copyright Hewlett-Packard Ltd.(1992)

I?!! HEWLETT
PACKARD

HP Part No. 71600-90006
Microfiche Part No. 71600-90031

Printed in U.K. March 1992

Printing History

The Printing History shown below lists all Editions and Updates of this manual and
the printing date(s). The first printing of this manual is Edition 1. The Edition number
increments by 1 whenever the manual is revised. Updates, which are issued between Editions,
contain replacement pages to correct the current Edition of the manual. Updates are
numbered sequentially startingwith Update 1. When a new Edition is created, it contains all
the Update information for the previous Edition. Each new Edition or Update also includes a
revised copy of this printing history page. Many product updates or revisions do not require
manual changes and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one-to-one correspondence between product
updates and manual updates.

Edition 1 (7 1600-90006) March 1992

Contents

1. Remote Operation
Introduction .
System Configuration .
Interface Types .
Hewlett-Packard Interface Bus (HP-IB)

What is the HP-IB? .
Connecting the HP 71600B Series to the HP-IB

Cabling Arrangements .
Using HP-IB .

Operating Distances .
Instrument Mode at Power On .
Address Configuration .
Local and Remote Modes .
Using Local and Remote Commands
HP-IB Required Commands .

Device Clear (CLEAR) .
Serial Poll (SPOLL) .
R.emote Enable (REMOTE) .
Local Lockout (LOCAL LOCKOUT)
Local (LOCAL) .

Sending Commands Over HP-IB
Using Non-HP Controllers .
Invalid Commands .
Reading Data .
Message Format .

String .
Numeric .
Integer .
A Number with Embedded Decimal Point.
A Number with Embedded Decimal Point and Exponent.

Boolean .
Block Data. .

2. Programming the HP 71600B Series
Introduction .
The 71600B Series Command Language

SCPI IEEE 488.2 Common Commands
IEEE Mandatory Commands .
IEEE Optional Commands .
SCPI Instrument Control Commands

Important Points about SCPI .
Instrument Model .

l - l
l - l
l-2
l-2
l-2
l-3
1-3
l-3
l-4
1-4
l-4
l-5
l-5
1-5
l-5
l-6
l-6
l-6
l-6
l-6
l-7
l-7
l-7
l-8
l-8
1-8
1-8
1-8
1-9
l-9
l-9

2-l
2-l
2-l
2-2
2-2
2-2
2-3
2-3

Contents-l

Layered Command Structure .
Command Syntax .
Optional Comma.nds .
Sending Commands .
Command Separators .

SCPI Command Structure .
Command Structure Example .

Master and Slave Operation .
Master and Slave Addresses .

Configuration Required for R.emote Operation
Programming in Master/Master/Slave Mode

Using the SYSTem:PTHRough Command
Example Program using Master/Master/Slave
Programming in Master/Slave Mode

3. Interrogating the Instrument Status
Introduction .
HP 71600B Series Status Reporting

Internal Registers .
Generalized Status Register Group Model
Pattern Generator Register Model
Error Detector Register Model .
Description of Status Registers .

Status Byte Register Group .
Serial Polling .
Status Byte Service Request Enable Register

Standard Event Status Register Group
Standard Event Enable Register

Failure Status register .
Questionable Data Status Group . Pattern Generator

Interrogating R.egister Groups
Interrogating the Condition and Event Registers
Transition Filter .
Questionable Data Event Enable Register

Questionable Data Status Group . Error Detector
Interrogating the Condition and Event Registers
Questionable Data Transition Filter
Questionable Data Status Enable Register

Operation Status Register Group . Error Detector
Interrogating the Condition and Event Registers
Operation Status Transition Filter
Operation Event Enable Register

lnterrupt Programming and using the Service Request
Generating a Service Request from the Operating Status Register
Service Requests and Master mode
Service Requests and Slave mode

2 - 3
2 - 4
2 - 4
2 - 4
2 - 4
2 - 4
2 - 5
2-6
2 - 7
2 - 7
2 - 7
2 - 8
2-8

2 - 1 0

3-1
3-l
3-2
3 - 2
3-3
3-4
3-4
3 - 4
3-5
3 - 6
3-7
3-8
3-8
3-9

3 - 1 0
3 - 1 0
3 - 1 0
3 - 1 0
3-11
3-11
3 - 1 2
3 - 1 2
3 - 1 2
3 - 1 3
3 - 1 3
3 - 1 3
3 - 1 4
3 - 1 4
3 - 1 7
3 - 1 7

Contents-2

4 . System Command Reference Section
About this Chapter .

Syntax Diagrams .
Implied Commands .
Query Commands .
Command Abbreviations .

Instrument Configuration .
Behavior at Power On .
Pattern Generator Commands .
SOURcel . The Data Source .

:PATTern .
[:SELect] <character data> .
:ZSUBstitut .

[ZRUN] <numeric value> .
:MDENsity .

[:DENSity] <numeric value>
:UPATtern<n>. .

[:LENGth] <numeric value>
:LABel <string> .
:USE STRaightlAPATtern .
:DATA [AIB,] <block-data>

:IDATa [AIB,] <start-bit>, <length-in-bits>, <block-data>
Example l-Use of the :DATA command
Example 2: Use of the :IDATa command
:FORMat: .

[:DATA] PACKed,<numeric value>
:AWORd .

:DAT-4<n> <NRf>{,<NRf>}
:APCHange .

:SOURce EXTernallINTernal
:MODE ALTernatelONEShot
:SELect AHALflBHALf .
:IBHalf ONCE: .

:EADDition ONCE]<boolean>
:SOURce EXTernallFIXed .
:RATE <numeric value>: .

:VOLTage .
[:LEVel][:IMMediate][:AMPLitude] <numeric value>
[:LEVel][:IMMediate]:HIGH <numeric value>
:ATTenuation-<numeric-value>
:ECL .

SOURce2 . The Clock Source .
:FR.EQuency[:CW(:FIXed]? <numeric value>
:VOLTage .

[:LEVel][:IMMediate][:AMPLitude] <numeric value>
[LEVel][:IMMediate]:HIGH <numeric value>
:ATTenuation <numeric value>
:ECL .

SOURce3 . The Trigger Source .
:TRIGger .

[:MODe] PATTernIDCLock .

4-l
4-l
4-l
4-l
4-1
4 - 2
4-2
4 - 2
4 - 3
4 - 4
4 - 4
4 - 4
4 - 4
4 - 4
4 - 4
4 - 4
4 - 5
4 - 5
4 - 5
4 - 6
4 - 7
4-9

4 - 1 1
4-12
4-12
4-12
4 - 1 2
4 - 1 3
4-13
4- 13
4- 13
4-13
4 - 1 3
4 - 1 3
4 - 1 4
4 - 1 4
4-14
4-14
4-14
4- 14
4-15
4-15
4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-16

:CTDRatio? <NR3> . 4-16
:PRBS<n> <NRf>{,<NRf>} 4-16
:ZSUB<n> <numeric value> . 4-17
:MDEN<n> <numeric value> 4-17
:UPAT<n> <numeric value> 4-17

:APATtern<n> ABCHangefSOPpattern 4-17
OUTPutl . The Data Output . 4-18

[:STATe] <boolean> . 4-18
:POLarity NORMaIlINVerted . 4-18
:DELay <numeric value> . 4-18
:TERMination <numeric value> 4-19
:OPTimize DAT,4(DADBar . 4-19

OUTPut - The Clock Output . 4-20
:TERMination <numeric value> 4-20

MMEMORY . 4-20
INITialize . 4-20
DELete <file name> . 4-21
CATalog? <NRS>,<NR3>{,<file entry>} 4-21
MPResent? <boolean> . 4-21

SYSTem . 4-22
:BEEPer . 4-22

[:IMMediate] [<freq>[,<time>[,<vol>]]] 4-22
:ERRor? <NR.l>,<string> . 4-22
:I<LOCk <boolea.n> . 4-23
:PRESet]:PRESet<n> . 4-23
:PTHRough . 4-23

[:STRing] <string> . 4-23
[:STRing]? <string>? . 4-24

:VERSion? . 4-24
STATUS . 4-25

Status Byte . 4-25
:OPERation . 4-25
:QIJEStionable . 4-25
:PRESet . 4-26
:FAILure . 4-26
:SSERvice . 4-27

Handling Coupled Parameters . 4-27
Error Detector Commands . 4-29
SENSel - The Data Sense . 4-30

:P,4TTern . 4-31
[:SELect] <character data> . 4-31
:ZSUBstitut . 4-31

[:ZRUN] <numeric value> . 4-31
:MDENsity . 4-31

[:DENSity] <numeric value> 4-31
:IJPATtern<n> . 4-31

[:LENGth] <numeric value> 4-32
:LABel <string> . 4-32
:USE STRaightlAPATtern . 4-32
:DATA [A]B,] <block-data> 4-33

:IDATa [AIB,] <start-bit>, <lengthin-bits>, <block-data> 4-34

Contents-4

:FORMat: .
[:DAT.4] PACKed,<numeric value>

:VOLTage .
:ZOTHreshold <numeric value>

:AUTO <boolean> .
:GATE .

[:STATe] <boolean> .
:MODE MANual]SINGle]Repetitive
:MANNer TIMEIERRorsJBITS
:PERiod .
:PERiod[:TIME] <numeric value>
:PERiod:ERRors <numeric value>
:PERiod:BITS <numeric value>

:SYNChronisat ONCEl<boolean>
:THReshold <numeric value>

:LOGGing ONCE(<boolean> .
:SQUelch <boolean> .
:ALARms <boolean> .
:THReshold <numeric parm>
:DURing[:EVENt] NEVerlESECondlERGThrshld
:END[:EVENt]NEVer] ALWayslNZECountJTERGthrshld

:END:REPort FULLIUREP
:EYE .

:TCENter]:TCENtre ONCE]<boolean>
:ACENter]:ACENtre ONCE]<boolean>
:WIDTh? <NR3> .
:HEIGht? <NR3> .
:THReshold <numeric value>

SENSe2 - The Clock Sense .
:VOLTage .

:EDGE POSitive(NEGative .
INPutl - The Data Input .

:POLarity NORMallINVerted .
:DELay <numeric value> .
:TERMination <numeric value>
INPut - The Clock Input .

:TERMination <numeric value>
Measurement Functions .

[SENSe[l]] .
:ECOunt. .
:ERATio .
:EINTerval .
:EFINterval .
:LOSS .

:POWer? <NR3> .
:SYNChronisat? <NR3> .

:G821 .
:GATE .

:ELAPsed? <NR3> .
:LTEXt? .

SENSe2 .

4-34
4-34
4-35
4-35
4-35
4-35
4-35
4-35
4-36
4-36
4-36
4-36
4-37
4-37
4-37
4-37
4-37
4-38
4-38
4-38
4-38
4-38
4-38
4-38
4-39
4-39
4-39
4-39
4-40
4-40
4-40
4-41
4-41
4-41
4-41
4-41
4-41
4-42
4-43
4-43
4-43
4-43
4-44
4-44
4-44
4-44
4-44
4-44
4-44
4-44
4-45

Contents-5

:FREQuency? <NR3> .
DISPlay .

:SHOW PGENerator]EDETector]BOTH
:PAGE USERlISTatuslMSTatuslLSTatuslMRESults(IRESultslG821
:REPort PREViouslCURRent .
:UPAGe[:DEFine] <parameter>

:UPAGe:CLEar. .
SYSTem .

:BEEPer .
[:IMMediate] [<freq>[,<time>[,<vol>]]]
:STATe <boolean> .

:ERRor? .
:KLOCk <boolean> .
:PRESet/:PRESet<n> .
:PTHRough .
[:STRing] <string> .
[:STRing]? <string>? .
:VERSion? .
:DATE <year>,<month>,<day>
:TIME <hour>,<minute>,<second>
:FREVision:MPRocessor?<string>

STATUS . ;
Status Byte .
:OPERation .
:QUEStionable .

:PRESet .
:FAILure .
:SSERvice .

IEEE Mandatory Commands .
IEEE Optional Commands .

IEEE Std 488.2- 1987 System Related Specifications
Device/Controller Synchronization Techniques

Overla.pped and Sequential Commands
Operation Complete Messages

References .

4-45
4-46
4-46
4-47
4-47
4-47
4-49
4-50
4-50
4-50
4-50
4-51
4-51
4-51
4-51
4-52
4-52
4-52
4-53
4-53
4-53
4-54
4-54
4-55
4-55
4-56
4-56
4-57
4-58
4-58
4-59
4-59
4-59
4-59
4-60

5. Program Examples

6. TMSL Command Definition Quick Reference
TMSL Command Definition Quick Reference Guide

Introduction .
The Pattern Generator .
The SOURce subsystem .

SOURcel: The Data Source .
SOURce2: The Clock Source .
SOURce3: The Trigger Source .
The OUTPut subsystem .

OUTPutl: The Data Output .
OUTPut2: The Clock Output .
The MMEMory subsystem .
The SYSTem subsystem .

6-l
6-l
6-l
6-l
6-l
6-3
6-3
6-4
6-4
6-4
6-4
6-5

Contents-6

The STAT US subsystem . .
IEEE Common Commands .

Mandatory Commands .
Optional Commands . . .
PART 2: Error Detector , .

The SENSe subsystem . .
SENSel: The Data Sense .
SENSe2: The Clock Sense .
The INPut subsystem . . .

INPutl: The Data Input .
INPut2: The Clock Input .
The Measurement subsystem
DISPlay subsys tem
The SYSTem subsystem . .
The STAT US subsystem . .
IEEE Common Commands .

Mandatory Commands .
Optional Commands . . .

.....................6-5

.....................6-6

.....................6-6

.....................6-6

.....................6-7

.....................6-7

.....................6-7

.....................6-8

.....................6-9

. 6-9

. 6-9

. 6-9

. 6-10

. 6-11
. 6-12
. 13
. 13
. 13

SCPI Conformance Information
SCPI Conformance Information . 1
SCPI Version . 1
SCPI Confirmed Commands . 1
SCPI Approved Commands . 3
Non SCPI Commands . 4

Messages
No Error. 1
Command Errors [-199, -100] . 1
Execution Errors [-299, -200] . 5
Query Errors [-499, -400] . 11

Contents-7

Figures

3-l. Generalized Status Register Group
3-2. Pattern Generator Register Model
3-3. Error Detector Register Model .
3-4. Status Byte Register .
3-5. Standard Event Status Register .
3-6. Questionable Data Status Register Group . Pattern Generator
3-7. Questionable Data Status Register Group
3-8. Operation Status Register Group
3-9. Service Request Illustration .

3-10. Service Request Example Program
4-l. SOURcel Syntax Diagram .
4-2. SOURce2 Syntax Diagram .
4-3. SOURce3 Syntax Diagram .
4-4. OUTPutl Syntax Dia.gram .
4-5. OUTPut Clock Output .
4-6. Memory .
4-7. SYSTem Syntax Diagram .
4-8. Data Amplitude and High-Level Relationship
4-9. Clock Amplitude and High-Level Relationship

4-10. SENSel Syntax Diagram .
4-11. SENSe2 Syntax Dia.gram .
4-12. INPutl Syntax Diagram .
4-13. FETCh Syntax Diagram .
4-14. DISP1a.y Syntax Diagram .
4-15. SYSTem Syntax Diagram .

Tables

3-2
3-3
3-4
3-6
3-7
3-9

3-11
3-12
3-14
3-17

4-3
4-15
4-16
4-18
4-20
4-20
4-22
4-28
4-28
4-30
4-40
4-41
4-42
4-46
4-50

l-1. HP 71603B error performance analyzers l - l
l-2. Part Numbers of HP-IB Cables . l-4
2-1. , . 2-7
3- 1. Internal Registers . 3-2
3-2. Status Byte Register . 3-5
3-3. Standard Event Status register . 3-7
3-4. Failure Status Register . 3-9
3-5. Questionable Data Status register 3-10
3-6. Questionable Data Status register group 3-11
3-7. Operation Status register . 3-13

Contents-8

Remote Operation

Introduction
This section contains the information to operate the instrument remotely using a suitable
Controller. The aspects of remote operation covered are as follows:

n System Configuration

n Interface Types

n Hewlett-Packard Interface Bus

n Connecting the HP 71600B Series to the HP-IB

n Using HIP-IB

System Configuration
The HP 71603B error performance analyzer system is factory preset to the following
configuration:

Table l-1. HP 716038 error performance analyzers

Model No. Description Default Mode HP-IB,MS-IB Address

HP 70842B 3 GHz error detector master 0,17

HP 70841B 3 GHz pattern generator slave 1,18

Changing the error detector or pattern generator address is simply a matter of changing the
setting of a small DIP switch inside the module. Full details of this operation are in the HP
71600B Series Installation and Verification manual, part number 71600-90005.

For more information about master operation, slave operation and MS-IB addressing refer to
Section 2 of this manual (Programming the HP 71600B Series).

Note
I

w

The HP 71604B pattern generator systems require no change. The pattern
generator in these systems is factory preset to be a master module.

Remote Operation 1-l

Interface Types
There are two communications interfaces used in the HP 71600B Series. The MS-IB
(Measurement System Interface Bus) and the HP-IB (Hewlett-Packard Interface Bus).

MS-IB The Measurement System Interface Bus is the interface used for internal
communication between system modules on the Modular Measurement
System (MMS).

Operational details of the MS-IB interface can be ignored when the HP
71600B Series is remotely controlled. For further information refer to the HP
71600B Series Installation and Verification manual, part number 71600-90005.

HP-IB The Hewlett-Packard Interface Bus is the interface used for communication
between a controller and external devices such as the HP 71600B Series. The
HP-IB conforms to IEEE standard 488-1978, ANSI1 standard MC 1.1 and
IEC Recommendation 625-l.

Note
I

Q

If you are using the HP-IB or MS-IB interfaces for the first time read this
section first. More information about configuring the HP 71600B Series
is contained in the Installation and Verification manual, part number
71600-90005.

Hewlett-Packard Interface Bus (HP-IB)

What is the HP-IB?

The Hewlett-Packard Interface Bus (HP-IB) is Hewlett-Packard’s implementation of IEEE
standard 488-1978, ANSI1 standard MC 1.1 and IEC Recommendation 625-l.

The HP-IB Interface is easy to use. It allows flexibility in both communicating and controlling
data between a controller and the HP 71600B. It is also one of the easiest methods of
constructing automatic test systems.

Devices on the bus fall into one of two categories, controller or non-controller. For example,
the simplest system (two non-controllers) where one instrument is configured to send data
continuously - known as TALKING and the other instrument (such as a printer) is configured
to receive data continuously - known as LISTENING. Most devices can perform both roles,
TALK or LISTEN, but not simultaneously. Usually a controller controls which instrument
TALKS and which instrument LISTENS. The HP 71600B Series can TALK and LISTEN
when instructed to do so by a suitable controller. In addition it can operate without a
controller when logging results or screen dumping to an external printer configured in LISTEN
ALWAYS mode.

The controller may also manage other instruments connected in the same bus configuration,
addressing only one instrument, to carry out the data transfer or TALK function.

1-2 Remote Operation

Further information on HP-IB standards and concepts is available in the following
publications:-

w IEEE Interface Standard 488-1978

n ANSI1 Interface Standard MC 1.1

n Improving Measurements in Engineering and Manufacturing (HP P/N 5952-0078)

m Condensed Description of the Hewlett-Packard Interface Bus (HP P/N 59401-90030)

Connecting the HP 71600B Series to the HP-IB

Cabling Arrangements

There are two possible cabling arrangements when using the HP 71600B Series remotely,
depending on whether the system is a pattern generator or an error performance analyzer.

The arrangement for an HP 71604B pattern generator system requires only one HP-IB cable.
This is connected from the Controller to the HP-IB port on the display mainframe. The
system then appears as an integrated system to the controller.

The other arrangement is for the HP 71603B error performance analyzer system. This
arrangement causes the pattern generator and error detector to appear as separate devices to
the controller. This configuration requires a cable to the HP-IB port on the display mainframe
and to the additional mainframe in the system.

Using HP-IB
You should consider the following when connecting the instrument for operation over the
HP-IB.

n Operating distances

n Instrument Mode at Power On

m Address Configuration

m Local and Remote Modes

m Using Local and Remote Commands

n HP-IB Required Commands

n Sending Commands Over the HP-IB

n Using Non-HP Controllers

m Invalid Commands

n Reading Data

n Message Format

Remote Operation 1-3

Operating Distances

Up to 15 instruments can be connected on a local bus system, but it is important to ensure
that the maximum HP-IB cable length between instruments is less than 2 meters. In addition
the total cabling should not exceed 20 meters.

Some useful cable part numbers are listed in Table 1-2.

Table 1-2. Part Numbers of HP-IB Cables

Description HP Part NumberI I

I lm I HP 10833A I

I 2m I HP 10833B I

For distances up to 1OOOm a suitable bus extender such as a HP 37203A or a HP 37201A can
be used. Two bus extenders are required, one at the local bus and one at the remote bus.
For distances beyond 1OOOm two HP 37201A bus extenders with suitable modems must be
employed.

Note
I

!B

The 4m cable may be used under certain conditions, usually the driver loading
has to be altered to ensure satisfactory operation.

Instrument Mode at Power On

At power on the HP 71GOOB Series will wake up in the same mode as it was powered down
in. Normally, at power on, the HP 71600B Series is ready for either front panel operation or
remote operation. If however the instrument was performing a separate operation during
power down, for example printing to an external printer or performing the instrument self
test, it will require to complete that operation at power on before it is available for front panel
or remote operation.

Caution No HP-IB activity should take place within 15 sets of system power up, as this
will effect the system power up routine and may result in system hang up.

Address Configuration

When configuring a HP-IB based system it is essential that each device on the HP-IB has
a unique address. The device address can be in the range of 1 to 30. For a controller to
communicate with a device over the HP-IB it must send the commands to the appropriate
HP-IB device address.

1-4 Remote Operation

Local and Remote Modes

The HP 71600B Series can be operated in one of two modes: local or remote.

In local operation, all the front controls are responsive and control the instrument.

In remote operation the softkeys which configure the system are inoperative, with exception of
the display softkeys, and the instrument is controlled by the HP-IB controller. The front panel
display reflects the remote programming commands received.

Using Local and Remote Commands

At power on the instrument is in local mode and is sent to the remote mode by one of two
methods.

The first method uses a dedicated command and with HP Basic this is the REMOTE
command followed by the instrument address that is REMOTE 717.

The second method is by sending any recognizable command string to the instrument. The
instrument will recognize the command string, set itself to the remote mode and then act on
that command.

There are three ways to return the instrument back to local mode. The first method is to
use the HP Basic command LOCAL plus the instrument address, that is LOCAL 717. The
second method is to press the front panel LCL key. The third method is to cycle power to the
instrument.

Note
I

lb

The instrument behaves differently in LOCAL mode if a LOCAL command
is asserted on the interface bus by the controller. For example, to assert a
local condition at interface 7, the command is simply LOCAL 7. When this
condition is present sending a command string to the instrument will not
cause it to enter the remote state. It will however act on the command string
but remain in the local state.

To cancel the LOCAL 7 state you must use the REMOTE 7 command.

HP-IB Required Commands

The Required Commands perform the most basic remote functions over HP-IB and are
common to all HP-IB controllable instruments. The commands are as follows:-

n DEVICE CLEAR

n SERIAL POLL

n REMOTE ENABLE

l LOCAL LOCKOUT

n GO TO LOCAL

Device Clear (CLEAR)

This command initializes the instrument HP-IB hardware.

The command format using HP 200/300 Series Basic is:-

for example. CLEAR 717

Remote Operation l-5

Serial Poll (SPOLL)

A serial poll will retrieve the value of the primary status byte. This byte contains useful
information about the current state of the instrument.

for example.

SPOLL(717)

Remote Enable (REMOTE)

The Remote command instructs the instrument to enter the REMOTE state and be ready to
accept instructions via HP-IB.

When the HP 71600B receives this command it illuminates the front panel REMOTE LED.

for example.

REMOTE 717

Local Lockout (LOCAL LOCKOUT)

It is recommended that the Local Lockout command is sent after the Remote. This disables
the front panel local key preventing the return to local mode and thus any interference to the
instrument settings.

It should always be preceded by the REMOTE command.

for example.

LOCAL LOCKOUT 7 (configures all the instruments on the bus to the Local Lockout
condition.)

Note
I

!B

If the instrument has been set to the LOCAL LOCKOUT condition, then the
front panel LOCAL key is disabled. The instrument can only be returned
to LOCAL operation by the controller sending the LOCAL command or by
cycling power to the instrument.

Local (LOCAL)

The Local command returns the instrument from Remote operation to local front panel
control. for example.

LOCAL 7 or LOCAL 717

Sending Commands Over HP-IB

To send commands over the HP-IB involves sending the command string via the interface
select code to the device address. HP Computers use the Basic instruction OUTPUT to send
command strings. The structure of a command line is as follows:-

OUTPUT interface select code + device address; “command string”

Note
I

Q

The semi-colon symbol is the command separator and must be included.

The command string must be enclosed in inverted commas

1-6 Remote Operation

Using an HI’ 300 Series Controller with its HP-IB interface set at select code 7 and a device at
address 17, a typical command line to reset the instrument would appear as follows:-

OUTPUT 717;“*RST”

Using Non-HP Controllers

With non-HP controllers it may be necessary to send a suitable command terminator after the
data message, the terminator can be:-

= ASCII newline (identical to the linefeed character, LF)

n ASCII carriage return + 1 linefeed, i.e. CR/LF

In most HP controllers the CR/LFis sent automatically when HP Basic OUTPUT statements
are used.

Invalid Commands

A command will be rejected if:

n It contains a syntax error

n It cannot be identified

n It has too few or too many parameters

n A parameter is out of range

n It is out of context

All subsequent commands in the same string will be ignored.

Reading Data

It is possible to interrogate the individual settings and status of a device using query
commands. Retrieving data is a two stage operation.

The query command is sent from the controller using the OUTPUT statement and the data is
read from the device using the ENTER statement. A typical example, using the SCPI IEEE
488.2 Common Command “*IDN?” querying the identity of a device, is given as follows:-

OUTPUT 717;“*IDN?”

ENTER 717;Identity$

PRINT Identity$

Typically this would display the identity string “HEWLETT-PACKARD,70842B,O,A.O1”.

Note
I

I?

When sending strings to the instrument either the double quote (‘I) or the
single quote may be used (‘), the former being more suited to PASCAL
programs which make use of single quote, the latter being more suited to use
in BASIC programs, which uses double quote as a delimiter. In this manual
the double quote has been used throughout.

Remote Operation l-7

Message Format

The HP 71600B Series has the capability of returning data in the following formats:-

n STRING

n NUMERIC

n BOOLEAN

n BLOCK DATA

String

Returns an ASCII string representing the instrument serial number, enclosed in quotes. This
should be entered into a string variable.

Example:

10 OUTPUT 717;“*IDN?”

20 ENTER 717;Serial$

30 PRINT Serial$

40 END

Possible Result = “HEWLETT-PACI<ARD,70842B,O,A.O1”

Numeric

Returns one of three numeric formats and can be entered into a string or numeric variable.

The three formats are:-

m ,4n integer

n A number with embedded decimal point.

n A number with embedded decimal point and exponent.

Integer

Example:-

10 OUTPUT 71i;“*STB?”

20 ENTER 717;Status_byte$

30 PRINT Status-byte$

40 END

Requests the contents of the status byte. Possible Result = +64

A Number with Embedded Decimal Point.

Example:-

10 OUTPUT 717;“:VOLTAGE:ZOTHRESHOLD?”

20 ENTER 717;Level$

30 PRINT Level$

1-8 Remote Operation

40 END

Requests the current voltage threshold that the system is operating at. Possible Result =
-4.90000000E-001

A Number with Embedded Decimal Point and Exponent.

10 OUTPUT 717;“FETCH:ECOUNT?”

20 ENTER 717;Error-count

30 PRINT Error-count

40 END

Requests the frequency at which the system is operating.

Possible Result = +9.91000000E+012

Boolean

Boolean parameters are used to indicate whether a condition is true or false. A numeric value
is returned where 1 = true and 0 = false.

Block Data

Block data is used when large quantities of related data is being returned. Blocks are returned
as definite length blocks.

Remote Operation l-9

Programming the HP 71600B Series

Introduction
This section gives information on how to begin programming the HP 71600B Series.

The section covers the following topics:-

n The 71600B Series Command Language

n Command Types

n Important Points about SCPI

n SCPI Command Structure

n Master and Slave Operation

n Configuration Required for Remote Operation

n Programming in master/master/slave mode

The 71600B Series Command Language
The HP 71600B Series conforms to the standard language for remote control of instruments.
Standard Commands for Programmable Instruments (SCPI) is the universal programming
language for instrument control.

SCPI can be subdivided into two distinct command sets.

n Common Commands

n Instrument Control Commands

SCPI IEEE 488.2 Common Commands

This is a common command set which conforms to IEEE 488.2 and which contains general
housekeeping commands.

The common commands are always headed by an asterisk. A typical example is the reset
command:-

O U T P U T 71S;“*RST”

The IEEE 488.2 command set also contains query commands. Query commands always end
with a question mark. A typical example is the command querying the identity of a device at
address 717.

O U T P U T 717;“*IDN?”

ENTER 718;Identity$

Programming the HP 716008 Series 2-l

A full list of commands can be found in Section 4.

IEEE Mandatory Commands

The following IEEE 488.2 mandatory commands are implemented:

*CLS Clear Status Command.

*ESE Standard Event Status Enable Command.

*ESE? Standard Event Status Enable Query.

*ESR? Standard Event Status Register Query.

“IDN? Identification Query.

*opt Operation Complete Command.

*oPc? Operation Complete Query.

*RST Reset Command.

*SRE Service Request Enable Command.

*SRE? Service Request Enable Query.

*STB? Read Status Byte Query.

*TST? Self-Test Query.

*WA1 Wait-to-Continue Command.

IEEE Optional Commands

The following optional commands are implemented:

*OPT? Option Identification Query.

*psc Power On Status Clear Command.

*Psc? Power On Status Clear Query.

*RCL Reca.ll device setup.

*SAV Save device setup.

SCPI Instrument Control Commands

SCPI is the command language used to setup and control the HP 71600B Series hardware. It
is a powerful command set designed for electronic test and measurement hardware.

SCPI is an extension of IEEE 488.2 and is a standard set of programming commands for
all Hewlett-Packard test and measurement instrumentation. This section will explain the
implementation of SCPI in the HP 71600B Series. For further information on SCPI refer to
the Beginner’s Guide to ‘TMSL, part number H2325-90001.

*TMSL (Test and Measurement System Language) is Hewlett-Packard’s original
implementation of SCPI.

2-2 Programming the HP 716008 Series

Note
I

w

The response of the instrument to the “RST, *RCL or SYSTEM:PRESET
commands may be up to 3 seconds. Any HP-IB program using these
commands should have a timeout of greater than 3 seconds.

Important Points about SCPI
There are a number of key areas to consider when using SCPI for the first time.

These are as follows:-

= Instrument Model

n Layered Command Structure

n Command Syntax

n Optional Commands

n Sending Commands

n Command Separators

Instrument Model

SCPI guidelines require that the HP 71600B Series conforms to an instrument model. This
ensures that when using SCPI, functional compatibility is achieved between instruments which
perform the sa.me tasks. For example, if two different instruments have a programmable clock
frequency setting then both instruments would use the same SCPI commands to set their
frequency. The instrument model is made up of a number of subsystems. Each subsystem is
associated with a particular module in the modular measurement system (MMS).

The sub-system defines a group of functions within a module and has a unique identifier under
SCPI which is called the Root Keyword.

For more detail on the instrument model refer to Section 4, the System Command Reference
Section.

Layered Command Structure

The SCPI command structure is best explained by equating it with the HP 71600B Series
instrument model. The top layer in SCPI identifies a sub-system within the modular
measurement system (MMS). The next layer down is a command relating to that module or
instrument within the MMS. The bottom layer is any parameter that is associated with that
given command.

Programming the HP 716008 Series 2-3

Command Syntax

Commands can be in short or long form. As we shall discover later in this section using the
short form saves time when entering a program, however using long form makes a program
more descriptive and easy to understand.

Optional Commands

Some layers in the SCPI command structure are optional. A typical example is where a
command is unique to one module. In this case the top layer (that is, the Root Keyword) of
the command structure may be omitted.

Sending Commands

Commands are sent over the HP-IB in the same way that HP-IB and IEEE 488.2 common
commands are sent. HP controllers use the HP BASIC instruction OUTPUT to send
commands strings. The only difference with SCPI is the structure of the command string.

Command Separators

The SCPI command structure is hierarchical and is governed by a number of symbols. For
example, a change in the command hierarchy is indicated by a colon, similar level commands
are separated by a semi-colon and parameters are separated by a comma. This is explained in
more detail in the following section, headed SCPI Command Structure.

SCPI Command Structure
As previously stated the SCPI command set has a hierarchical layered structure.

The structure is as follows:-

Root Keyword t Command Keyword $ Parameter(s)

Root Keyword The Root Keyword is the top layer in the command structure. It identifies a
subsystem within a module, which is contained in the modular measurement
system.

The subsystems in the HP 71GOOB Series are given the following root
keywords:-

2-4 Programming the HP 716008 Series

Module Subsystem

Data Source

Clock Source

Trigger Source

Output Subsystem

System Subsystem

Status Subsystem

Data Sense

Clock Sense

Data Input

Measurement Subsystem

Display Subsystem

System Subsystem

Status Subsystem

Root Keyword

[SOURce[l]:]

SOURce2

SOURce3

OUTPut[l]

SY STem

STATUS

[SENSe[l]:]

SENSe2

INPut[l]

FETCh/PFETch

DISPlay
SYSTem

STATUS

Command
Keyword

Parameter

Some root keywords may be optional if the destination of the command is
implicit in the Command Keyword.

The layer below the Root Keyword is the Command Keyword. It describes
the feature on the system which is to be changed. It will always be present in
any command string and may have additional associated commands.

The command parameters are the lowest layer in the SCPI command
structure. They may be required by the Command Keyword and are numeric,
string, boolean or block data.

Taking one command as an example we can examine this structure further.

Command Structure Example

In the following example we will examine a section of the pattern generator pattern selection
command for the HP 71604B pattern generator and HP 71603B error performance analyzer
systems.

The pattern command can be illustrated as follows:-

Root Keyword Command Keyword Parameter(s)

[SOURce[l]:] PATTern

[:SELect] PRBS(n)lZSUB(n)

MDENsity(n)]UPAT(n)

[SELect] PRBS(n)]ZSUB(n)

MDENsity(n)]UPAT(n)

[SOURce [l]:] Th’is is the top layer of the command structure and identifies the pattern
generator source sub-system.

Programming the HP 71600B Series 2-5

PATTern This is the next layer and is the equivalent of setting the front panel pattern
selection field.

PRBS(n),
ZSUB(n)

These are the parameters required by the PATTern command keyword.

Note
I

fib

Any optional commands are enclosed in square brackets [] and any optional
characters are shown in lower case.

A colon indicates a change of level in the command hierarchy. Commands at
the same level in the hierarchy may be included in the same command line, if
separated by a semi colon.

The bar symbol (1) indicates mutually exclusive commands.

To translate this into a command line you simply follow the same convention, however the
command line can be typed in several different ways. This depends on whether longform or
shortform is used. The following esample gives three possible forms of the command line all of
which are perfectly acceptable.

In longform:-

OUTPUT 718:“SOURCEl:PATTERN:SELECT PRBS7”

In shortform:-

OUTPUT 718:“SOURl:PATT:SEL PRBS7”

With optional commands removed:-

OUTPUT 718;“PATTERN PRBS7”

It can be seen from the examples that longform is the most descriptive form of programming
commands in SCPI and will be used for the examples given in this manual.

Master and Slave Operation
Instruments which operate under the control of the Modular Measurement System have two
possible modes of operation, master or slave.

When an instrument operates in master mode it acts as a independent device to the controller
and is controlled over the HP-IB via its own unique HP-IB address. When an instrument
operates in slave mode it is under the control of another master instrument and is not directly
addressable over the HP-IB.

2-6 Programming the HP 716008 Series

Master and Slave Addresses

Each instrument in the modular measurement system has a. unique ROW:COLUMN address.
The ROW address determines if the module is set for master or slave operation and the
column address determines the HP-IB address. Any module with a ROW address of 0 is
a master and any module with R.OW address 1 or higher is a slave. For more information
consult the HP 71600B Series Installation and Verification Manual, part number 71600-90005.

Configuration Required for Remote Operation
The error detector/pattern genera.tor/clock source instruments in the HP 71600B Series are
factory configured to master/slave/slave mode. This configuration is designed for manual
use of the system, and is not the recommended configuration for remote operation. The
recommended configuration for remote operation is master/master/slave mode. The system
will however operate in master/slave/slave mode, but requires additional programming
commands. Refer to page 2-10 for advice on remote operation in master/slave format.

The required instrument configuration for remote operation is as follows:-

Table 2-1.

Model No. I Description 1 Instrument Mode 1 MS-IBJIP-IB Address 1

HP~~~~~BI~GHz Error Detector 1 master I 0,17 I

HP 70841B 3 GHz Pattern Generator master 0,18

HP 70312A 3 GHz Clock Source slave 2,19

Note
I

!P

In the case of the HP 71600B Series the HP 70312A Clock Source is under the
control of the pattern generator. The method of sending commands to the
clock source is explained in the following sub-section headed Programming in
Master/h/Iaster/Slave Mode.

Programming in Master/Master/Slave Mode
When programming in master/master/slave mode the instruments in master mode are
addressed directly, however the slave modules receive their commands through the master
which controls them. To send a command to a slave instrument, the command string is sent
to the master that controls it and the master then passes the command string to the slave
instrument over the MS-IB.

To do this the command string must ideutify which commands are intended for the master
and which are for the slave. This is achieved by using an additional command, that is,
“SYSTem:PTHRough” command.

Programming the HP 716008 Series 2-7

Using the SYSTem:PTHRough Command

When a master module receives the SYSTEM:PTHRough command. It does not act on
the parameter(s) following the command, instead it passes the parameter(s) to any slave
present at a higher MS-IB row address. In the case of the 71GOOB Series the slave clock
source is under the control of the master pattern generator. When the SYSTem:PTHRough
command is sent to the pattern generator at address 718, the parameters within the
SYSTem:PTHRough command are passed to the clock source at row address 2.

The actual parameter(s) that the SYSTEM:PTHRough command is passing to the slave
instrument must be enclosed in inverted commas. For example, suppose we wish to send the
*RST command to the slave clock source. The command line is as follows (note HP Basic
does not allow double quotes inside double quotes therefore single quotes must be used).

OUTPUT 718;“SYSTEM:PTHROUGH ‘*RST”’

Note
I

w

The slave clock source is at MS-IB row address 2. If we suppose that another
slave instrument is present at MS-IB row address 1, then because that
instrument is higher in the slave hierarchy than the clock source and it would
receive the parameter(s) in the SYSTem:PTHRough command.

In a configuration like this where two slaves are cascaded at different MS-IB
row addresses then, two SYSTem:PTHRough commands would be used to
send parameters to the lower order slave. The command form would require
the second SYSTem:PTHRough command to be embedded within the first
with inverted commas.

Caution When the frequency of the clock source is changed some settling time is
required. The recommendation is after a new frequency has been selected
the pattern genera.tor frequency measurement should be queried. When two
successive readings are exactly equal, the frequency is stable.

If the error detector eye width measurement is to be made after a new
frequency selection, the error detector frequency measurement should be
queried for two successive equal frequency readings.

Example Program using Master/Master/Slave

The following short program gives a typical example of programming in Master/Master/Slave
mode. The program sets the error detector, pattern generator and clock source to their
default settings and then performs an error count measurement at 1 GHz.

10
20
30
40
50
60
70
80
90
100
110

! Program name PROC-SZ-1
I
! This program demonstrates how to program in MASTER/MASTER/SLAVE
! mode. It sets system to perform a basic error count measurement at
! at 1 GHz.
I

PRINT CHR$(12) ! Clear the screen.
Error_det=717 ! Assign HP-IB addresses to variables.
Pattern_gen=718
OUTPUT Error-det; "*RST;*CLS" ! Reset system.
OUTPUT Pattern-gen;"*RST;*CLS"

2-8 Programming the HP 716008 Series

120 OUTPUT Pattern-gen;"SYSTEM:PTHROUCH '*RST;*CLS'"
130 WAIT 3 ! Allow settling time.
140 OUTPUT Pattern-gen;"SYSTEM:PTHROUGH 'FREQUENCY IGHZ"' ! 1 GHz at +ODbM.
150 OUTPUT Pattern-gen;"SYSTEM:PTHROUCH 'AMPLITUDE +ODBM;AMPLITUDE:STATE ON'"
160 Read-freq: ! This loop ensures the received frequency is stable.
170 OUTPUT Error_det;"FETCH:SENSE2:FREQUENCY?"
180 ENTER Error-det;Frequencyl
190 WAIT 1
200 OUTPUT Error_det;"FETCH:SENSE2:FREQUENCY?"
210 ENTER Error_det;Frequency2
220 IF FrequencyloFrequency2 THEN Read-freq
230 OUTPUT Pattern-gen;"PATTERN:EADDITION ON" ! Enable error add.
240 OUTPUT Error-det;"GATE:MODE SINGLE" ! Single shot gating.
250 OUTPUT Error,det;"GATE:PERIOD 5;STATE ON" ! 5 sets.
260 WAIT 5
270 OUTPUT Error-det;"FETCH:ECOUNT?" ! Display error count.
280 ENTER Error-det;Error-count
290 PRINT "Error Count is",Error-count
300 END

Note
I

f#

More program examples are given in Section 3, Interrogating the Instrument
Status, and in Section 5, Program Examples.

Programming the HP 71600B Series 2-9

Programming in Master/Slave Mode

It is possible to operate the Pattern Generator as an MMS slave to the Error Detector. When
operated in this fashion, the following rules apply:

1. The slave cannot be spoken to directly over HP-IB. Instea.d, it must use the master as a
‘relay’ station.

Two HP-IB commands make this possible:

n SYSTem:PTHRough[:STRing] <string>

n SYSTem:PTHRough[:STR.ing]? <string>?

2. All commands under the master [SENSe[l]:]PATT ern node are automatically passed
through to the slave. All other commands are not; that is, to reset both the master and slave,
two commands are needed:

n OUTPUT ixx;“*RST”

n OUTPUT 7xx;“SYST:PTHR ‘*RST’”

3. The slave cannot issue a Service Request directly. Instead, it must notify its master that it
had a problem. To achieve this, bit 1 of the master’s Status Register Structure is defined as
the ’ Slave needs service’ :

Then, upon the control program realizing that bit 1 of the master has been set, it must use
the ‘SYSTem:PTHRough?’ command to interrogate the slave’s Status with a combination of:

OUTPUT 7xx;"SYST:PTHR '*STB?"'
OUTPUT 7xx;"SYST:PTHR '*ESR?"'
OUTPUT 7xx;"SYST:PTHR 'STAT:OPER:COND?"
OUTPUT 7xx;"SYST:PTHR 'STAT:FAIL:EVEN?"'
OUTPUT 7xx;"SYST:PTHR 'SYST:ERR?"'

4. The MAV (Message Available) Summary message in the slave’s Status Byte Register
is never set. Instead, the RQS (Request Service) message is set, and this causes the Slave
Service bit of the master to be set.

Note
I

VI

Commands using <block-data> parameters cannot be used with the
PTHRough command.

2-10 Programming the HP 716008 Series

3
Interrogating the Instrument Status

Introduction
This section explains how to use the powerful status reporting features which are contained in
the HP 71600B Series.

It explains the structure of the internal registers with examples on how to interrogate them. It
also explains the concept of interrupt programming using the Service Request.

The section covers the following topics:-

n HP 71600B Series Status Reporting

m Status Register Group Model

n Pattern Generator Register Model

n Error Detector Register Model

l Description of the Status Registers

n Interrupt Programming and using the Service Request

HP 71600B Series Status Reporting
The HP 71600B Series has powerful status and reporting features which give important
information about events and conditions within the instrument, for example flag the end of
a measurement or perhaps indicate a command error. To access this information requires
interrogating a set of registers using Standard Commands for Programmable Instruments
(SCPI).

Interrogating the Instrument Status 3-1

Internal Registers

The registers contained in the HP 71600B Series are as follows:-

Table 3-1. Internal Registers

I Pattern Generator Error Detector

Status Byte Status Byte

Standard Event Status Standard Event Status

Questionable Data Status Questionable Data Status

Operation Status

Failure Status Failure Status

The internal register layout conforms to SCPI standards. This requires that each module
in the Modular Measurement System (MMS) conforms to a register model. The pattern
generator and error detector register models are explained separately, however the operation of
the Status Byte, Failure Status and Standard Event register is identical in both cases and is
explained for the pattern genera.tor model only.

The internal registers are read using a combination of SCPI common commands and
SCPI status commands. The method of reading each register is explained in the following
sub-sections headed Description of the Status Registers.

Generalized Status Register Group Model
SCPI guidelines specifies a register group model which is the building block of the SCPI status
reporting system. The SCPI generalized status register group

model is shown in Figure 3-l.

C O N D I T I O N TRANSITIDN EVENT ENABLE
REGlSTER FLTER EVENT REGISTER REGISTER

REGISTER GROW
SLWIMARY BIT

Figure 3-1. Generalized Status Register Group

Condition Register This register monitors the hardware and firmware status of the
instrument. There is no latching of conditions in this register, it is
updated in real time.

3-2 Interrogating the Instrument Status

Transition Filter -4s the name implies it determines whether positive or negative transitions
(true or false) in the Condition register sets the Event register.

Event Register This register latches the transient states that occur in the Condition
register as specified by the Transition Filter.

Enable Register The Enable Register acts like a mask on the Event register. It determines
which bits in the Event register set the summary bit in the Status Byte.

This reporting structure is the basis of generating interrupts that is, service requests, and is
explained more fully in the section headed Interrupt Programming.

Pattern Generator Register Model
We will examine the register model by first considering the pattern generator.

The register model is shown in Figure 3-2.

STANDARD EVENT OUESTIONABLE
STATUS REGISTER DATA STATUS

GROUP REGISTER GROUP

opt_____

‘-- NOT USED --...
.__ OyE _____________
. DDE_.....

EXE
.__ C,,E _____._..._..
.-. NOT USED ..-.-
. po,.J . .._..__.__t

CLOCK-

FAlLURE STATUS
REGISTER

Figure 3-2. Pattern Generator Register Model

Note
I

e

SCPI guidelines specify the layout of each register group. The bits in each
register are allocated a specific purpose. The HP 71600B Series of instruments
only use some of the specified features, therefore the status registers contain a
number of unused bits.

The pattern generator register group model consists of the following register groups:- the
Standard Event, Questionable Data and Failure Status registers groups. These register groups
all report to the Status Byte.

Interrogating the Instrument Status 3-3

Error Detector Register Model
The error detector register model differs from the pattern generator in two respects.

Firstly, the register model has an additional register group, the Operation Status register
group.

Secondly, the Questionable Data register has more information than its counterpart in the
pattern generator. The error detector register model is shown in Figure 3-3.

STANDARD EVENT OUESTIONABLE

OPERATION STAT”!, S T A T U S RE‘lSTER DATA STATUS

REGISTER GAOUP GROUP REGISTER GROUP

- BIT ERR ---
-. END PER ----
. LTEX’(_..._...
. *LG
- CEN

FAILURE STATUS

REGISTER

._.

._.

. .

._.

._.

._.

._.

.

. .

STATUS BYTE

REWSTER

Figure 3-3. Error Detector Register Model

A full description of the different registers given in the following section headed Description of
Status Registers.

Description of Status Registers
The following descriptions of the Status Byte register group, Standard Event register group
and Failure Status register apply to both the pattern generator and the error detector. The
Questionable Data Status register groups differ between instruments and the Operation Status
register applies to the error detector only, therefore these are explained separately.

Status Byte Register Group

The Status Byte is the summary register which the other registers report to. Each reporting
register is assigned a bit in the Status byte register which it can use to summarize its status.

3-4 Interrogating the Instrument Status

Table 3-2. Status Byte Register

Des&don Bit Value

3 QUES

4 MAV

i

5 ESB

6 RQS or MSS

7 -

FAIL Summary
Bit

SLAVE Service
Bit

QUES Summa.ry
Bit

MAV Summary
Bit

Failure Status register summary bit.

Slave Service bit.

1

2

This bit is not used. I I

Questionable Data Status register summary bit. 1 8 I

Output queue summary bit. 16

Standard Event register summary bit. 32

SRQ or master status summary bit. 64

Operation Status register summary bit (error detector only). 128

Bit 0, indicates there are bits set in the Failure Status register. This in
turn indicates there has been a major hardware failure in the instrument.

Bit 1, indicates that a slave instrument is requesting service. This bit is
used in master/slave configurations only.

Bit 3, indicates that a bit ha.s been set in the Questionable Data Status
register. The bits in the Questionable Data Status register indicate when
a signal is of questionable quality.

Bit 4, is the message available summary bit. This bit remains set until all
the output messages are read from the instrument. The instrument stores
its messages in an output queue. These messages are read by addressing
the instrument to talk and reading the data. The availability of this data
is summarized by the MAV bit.

ESB Summary Bit Bit 5, indicates that a bit in the Standard Event register has been set.

RQS or MSS
Summary bit

Bit 6 of the Status Register has two definitions depending of the method
used to access the register. If the value of the register is read using the
serial poll bit 6 is referred to as the RQS (req uest service bit) as this is the
means used to inform the active controller that the instrument has set the
service request control line (SRQ) i.e. interrupted the controller.

If the register is read using the “STB? common query command, then bit
6 is referred to as the master summary bit or MSS bit. It is this bit which
indicates the instrument has requested service. The MSS bit is not cleared
when the register is read using the *STB? command. It always reflects the
current status of all the instrument’s status registers.

Serial Polling

The Status Byte register can be interrogated by serial polling the instrument.

It is easily done using an HP Controller booted up in BASIC. The command for serial polling
is SPOLL, as shown in the example program lines below.

Interrogating the Instrument Status 3-5

10 Status-value = SPOLL(717)

20 PRINT Status-value

The binary weighted decimal value returned in the variable Status-value is the value of the
Status Byte. The Status Byte gives a summary of the state of the reporting registers and will
indicate a change of state in any reporting registers.

Another way of reading the value of the Status Byte is by using the *STB? common query
command.

10 OUTPUT 717;“*STB?”

20 ENTER 717;Status-value

In this case the value returned by the variable Status-value is exactly the same as the value
returned by carrying out a Serial Poll.

Status Byte Service Request Enable Register

The Service Request Enable register is an 8 bit register which acts as a mask on the Status
Byte. The Service Request Enable register is programmed using the SCPI common command
*SRE. When the register is programmed with any given value this determines when the
instrument may issue a service request. For a service request to be issued the summary bit in
the Status Byte must match the bit in the Service Request Enable Register. See Figure 3-4.

STATUS BYTE SERVICE REOUEST
REGISTER ENABLE REGISTER

FAIL ------.--+- BIT 0
SLAVE--------C- BIT 1
NOT USED BIT 2
OUES ~-------+- BIT 3 SRO
HA”

Et-

-------.+. BIT ‘
ESB --------+- BIT 5
~0s .-------w- BIT 6
OPER -.-----..e- BIT 7

Figure 3-4. Status Byte Register

For example if bit 3 is set in the Service Request Enable register then the instrument only
issues a service request when the corresponding bit is set in the Status Byte, that is bit 3, the
Questionable Status register summary bit. See the following example:-

OUTPUT 717;“*SRElG”

This sets bit 3 of the Service Request Enable register.

Note
1

I?

For a more detailed description on service request programming and example
programs, refer to the sub-section headed Interrupt Programming.

3-6 Interrogating the Instrument Status

Standard Event Status Register Group

The Standard Event Status register group is a 16 bit register group which gives general
purpose information about the instrument. It is unique in that it is the only reporting register
group programmed using SCPI common commands while the other reporting registers are
programmed using the SCPI Status command set.

Note
I

P

This register conforms, in part, to the generalized status register model. It
comprises of an Event and Enable register, but no Condition register or
Transition Filter. Therefore all positive (true) states occurring in this register
are latched.

STANDARD EVENT STANDARD EVENT
REGISTER ENABLE REGISTER

Figure 3-5. Standard Event Status Register

The bits in the Standard Event Status register group are defined as folloWs:-

Table 3-3. Standard Event Status register

Operation The operation complete bit, bit 0, is set in response to the ‘OPC
Complete Bit command if the instrument has completed all its pending operations.

Request Control This bit is not used in this instrument.
Bit
Query Error Bit The query error bit, bit 2, indicates there is a problem with the output

data queue. Either there has been an attempt to read the queue when it
is empty or the output data has been lost.

Interrogating the instrument Status 3-7

Device Dependent
Error Bit

Execution Error
Bit

Command Error
Bit

User Request Bit

Power On Bit

The device dependent error bit, bit 3, is set when an error of some kind
has occurred in the instrument.

The execution error bit, bit 4, is set when a command (HP-IB instrument
specific) cannot be executed due to an out of range parameter or some
instrument condition existing that prevents the execution. for example the
instrument is already set to the wrong range.

The command error bit, bit 5, is set whenever the instrument detects an
error in the format or content of the program message (usually a bad
header, missing argument, or wrong data type etc.).

The user request bit, bit 6, is set whenever the instrument control is
changed from remote to local.

The power on bit, bit 7, is set each time the instrument is powered from
off to on.

The Standard Event register can be interrogated using the *ESR? common query command.
It is an event register which is cleared after it is read.

OUTPUT 717;“*ESR?”

ENTER 717;EventregS

PRINT Event-reg$

Requests the contents of the Standard Event register. Possible result = +16 The Standard
Event Register may also be cleared without having to interrogate it. This is done by using the
“*CLS” command.

Standard Event Enable Register

The Standard Event Enable register is a 16 bit register which acts as a mask on the Standard
Event Status register. It allows one or more event bits in the Standard Event register to set
the ESB summary bit, bit 5, in the Status Byte.

For example, if bit 0 is set in the Standard Event Enable register, then, when the OPC bit in
the Standard Event register goes true, the ESB summary bit is set in the Status Byte.

The Standard Event Enable register is set using the “*ESE” command. The following gives
an example of setting bit 0, 1 and 2 in the Standard Event Enable register.

OUTPUT 7l&“*ESE 7”

Failure Status register

The Failure Status register is a 16 bit event register, however in the HP 71600B Series only 8
bits are used. The bits in this register are set to indicate a major hardware element of the
instrument has failed.

3-8 interrogating the Instrument Status

Table 3-4. Failure Status Register

1 Bit # 1 Description 1 Bit Value 1

I 0 I ROM failure. I 1 I

I 1 I RAM failure. I 2 I

2 Non Volatile memory corrupt. 4

3 Gate array failure. 8

4 PIT failure. 16

5 Interface board #l failure. 32

6 Interface board #2 failure. 64

7 MSIB failure. 128

I 8 I EPROM failure. I I256

1 9-15 (These bits are not used.

Note
I

!I

There is no Condition or Enable registers for the Failure Status register. Any
failures in the instrument are latched and indicated by this register. The FAIL
bit (bit 0) in the Status Byte register is automatically set whenever any bit in
the Failure Status register is set. Failures of this type are not recoverable.

Questionable Data Status Group - Pattern Generator

The Questionable Data Status group is a 16 bit register group, however in the pattern
generator’s case only 1 bit is used. The bits in this register set indicate that a signal is of
questionable quality.

OUESTIONABLE OUESTIONABLE OUESTIONABLE OUESTIONABLE

DATA CONDITION DATA TRANSITION DATA EVENT DATA EVENT ENABLE

REGISTER FILTER REGISTER REGISTER

B I T S

O-8

NOT

USEC

. ..CLOCK .

BiTS

O - 8

NOT

USEC

-> SUMNARY

BIT

Figure 3-6. Questionable Data Status Register Group - Pattern Generator

The Questionable Data Sta
is defined as follows:-

;us register group conforms to the SCPI Status Register model and

interrogating the Instrument Status 3-9

Table 3-5. Questionable Data Status register

Bit # Mnemonic Description Bit Value

O-8 These bits are not used.

9 CLOCK Clock loss. 512

lo-15 These bits are not used.

Interrogating Register Groups

The Questionable Data Status register group is interrogated using SCPI status commands.
The command format consists of

“Command identifier:Register group identifier:Register title”

Interrogating the Condition and Event Registers

The Condition and Event registers are interrogated using the :CONDITION? and :EVENT
commands. See the following example:-

Condition Register OUTPUT 718;“STATUS:QUESTIONABLE:CONDITION?”
Query ENTER 718;Question-con-reg

PRINT Question-con-reg

Event Register
Query

OUTPUT 718;“STATUS:QUESTIONABLE:EVENT?”

ENTER 71S;Question-evt-reg

PRINT Question-evt-reg

Transition Filter

The Transition Filter state is set using the “:PTRANSITION ” and “:NTRANSITION”
commands. The Transition Filter can be set to pass either positive transitions, negative
transitions or both.

The default setting of the Transition Filter is to pass positive transitions only. To also pass a
negative transition on bit 9, that is detect clock gain, from the Condition register to the Event
register the command is as follows:-

OUTPUT 718;“STATUS:QUESTIONABLE:NTRANSITION 1024”

To reset the Transition Filter to pass only positive transitions at bit 9, the command is as
follows:-

OUTPUT 718;“STATUS:QUESTIONABLE:NTRANSITION 0”

Questionable Data Event Enable Register

The Questionable Data Event Enable register acts as a mask on the Questionable Data Event
register. It is enabled by sending the command “: ENABLE”. The following example allows
one or more event bits in the Questionable Data Event register to set the QUES summary bit
in the Status Byte.

OUTPUT 718;“STATUS:QUESTIONABLE:ENABLE 512”

3-10 Interrogating the Instrument Status

This enables bit 9, Clock Loss. Whenever a clock loss condition occurs in the condition
register the QUES summary bit (bit 3) is set in the Status Byte register.

Questionable Data Status Group - Error Detector

The error detector Questionable Data Status register group is a 16 bit register set however in
the error detector only 4 bits are used. The bits in this register set indicate when a signal is of
questionable quality.

Figure 3-7. Questionable Data Status Register Group

Table 3-6. Questionable Data Status register group’

interrogating the Condition and Event Registers

The error detector Questionable Data register group is interrogated/programmed by the same
method as the pattern generator. The following example gives the commands for interrogating
the Condition and Event registers.

Condition Register OUTPUT 717;“STATUS:QUESTIONABLE:CONDITION?”
Query
Event Register
Query

OUTPUT 717;“STATUS:QUESTIONABLE:EVENT?”

Interrogating the Instrument Status 3-11

Questionable Data Transition Filter

The Questionable Data Transition Filter state is set in the same way as in the pattern
generator that is, the “:PTRANSITION” and “:NTRANSITION” commands. A typical
example would be as follows:-

OUTPUT 717;“STATUS:QUESTIONABLE:PTRANSITION 8”

OUTPUT 717;“STATUS:QUESTIONABLE:NTRANSITION 8”

This sets the Transition Filter to pass positive and negative transitions at bit 3.

Questionable Data Status Enable Register

The Questionable Data Status register acts as a mask on the Questionable Data Event
register. It is enabled by sending the command ‘I: ENABLE”. The following example allows
one or more event bits in the Questionable Data Status register to set the QUES summary bit
in the Status Byte.

OUTPUT 718;“STATUS:QUESTIONABLE:ENABLE 4”

sets bit 2, TIME

or OUTPUT 718;“STATUS:QUESTIONABLE:ENABLE 516”

sets bit 2, TIME - and bit 9, CLOCK LOSS.

If bit 2 is set in the Question Status Enable Register, then, when the TIME bit in the
Question Status register goes true, the QUES summary bit is set in the Status Byte.

Operation Status Register Group - Error Detector

The Operation Status register is a sixteen bit register group unique to the error detector of
which only 6 bits are used. This register group conforms to the SCPI register model and gives
information about the current operation the instrument is performing. The Operation Status
register group is defined as follows:-

OPERATION OPERATION

ST AT”S CONOlTlON STATUS TRANSlTlON

REGISTER FILTER

OPERATION

STATUS EVENT

REGISTER

OPERATION

STATUS EVENT

ENABLE REGISTER

BITSI I BITS BITS
13-R I I

B1TS

13-15 I I13-15 I I13.15

Figure 3-8. Operation Status Register Group

The bit in the Operation Status register group are defined as follows:-

3-12 Interrogating the Instrument Status

Table 3-7. Operation Status register

Interrogating the Condition and Event Registers

The Error Detector Operation Status register group set is interrogated/programmed by
the same method as the Questionable Data Status register group, except. the register group
identifier is changed. The following example gives the commands for interrogating the
Condition and Event registers.

Condition R.egister OUTPUT 7l8;“STATUS:OPERATION:CONDITION?”
Query
Event Register OUTPUT 718;“STATUS:OPERATION:EVENT?”
Query

Operation Status Transition Filter

The Operation Status register group Transition Filter value is set in the same way
as the Questionable Data Status register group that is, the “PTRANSITION” and
“NTRANSITION” commands.

A typical example would be as follows:-

OUTPUT 718;“STATUS:OPERATION:PTRANSITION 8”

This sets the Transition Filter to pass a positive transition from the Condition register at bit
3.

Operation Event Enable Register

The Operation Event Enable register is enabled by sending the SCPI command shown in the
example below. This allows one or more event bits in the Operation Status register to set the
OPER summary bit in the Status Byte register.

OUTPUT 718;“STATUS:OPERATION:ENABLE 512”

If bit 9 is set, in the Operation Event Enable register and the END PERIOD bit in the
Operation Event register goes true, then the OPER bit is set in the Status Byte.

Interrogating the Instrument Status 3-13

Interrupt Programming and using the Service Request
The method of interrogating the reporting registers is to read the register using SCPI status
commands. This method is perfectly adequate for most applications, however should you
wish to detect when a particular event occurs this would require the register to be continually
polled. This problem is solved using interrupts.

Interrupts allow the instrument to interrupt the controller when a particular register has
changed. The controller can then suspend its present task, service the instrument and then
return to its initial task. It is more convenient and more efficient to get the instrument to
issue a service request (SR.Q) w hen an event or condition occurs, rather than continually
monitor the instrument.

The basic steps involved in generating a service request (SRQ) are as follows:-

n Decide which particular event in a given status register you wish to trigger the service
request.

n Set the Transition Filter to pass the chosen transition of that event.

n Set the Enable register from that register group to pass that event to set the summary bit
in the Status Byte register.

H Set the Status Byte Enable register to generate an SRQ on the chosen summary bit being
set.

The process is best explained by looking at an actual example. The following example
generates an SRQ from an event in the Operating Status group.

Generating a Service Request from the Operating Status Register

The following example causes the error detector to generate a service request at the end of a
measurement period using bit 4 of the Operation Status. See Figure 3-9.

OPERATION STA.rUS TRANSITION OPERATION STATUS OPERATION STATUS
CONDITION REGISTER FILTER EVENT REGISTER EVENT ENABLE REWSTER

@T ERR

END PER

LOG

AL‘

[EN

..,. . .

/ STATUS BYTE SERVICE REQUEST
REGISTER ENABLE REGISTER

‘OPERATION ENABLE 512’

Figure 3-9. Service Request Illustration
‘.SRE 173’

3-14 Interrogating the Instrument Status

Note
I

!ir

The SRQ enable bit, bit 6, of the Status Byte is the master status summary
bit and will automatically be set on the occurrence of a service request.

The basic steps involved in setting the instrument to generate this service request are as
follows:-

Step 1

Step 2

Step 3

Set the Transition Filter to pass the chosen condition, either when it is
true (positive) or when it is false (negative). The default value of the
Transition Filter is that all positive (true) conditions are passed.

Program the Operation Enable Event register to allow bit 9 in the Event
register to set the summary bit in the Status Byte register.

Program the Service Request Enable register to generate a service request
when the Operation Status summary bit (OPER) is set in the Status Byte
register.

Translating these three steps into to SCPI command lines it appears as follows:-

10 Error-det=717

20 OUTPUT Error-det;“STATUS:OPERATION:PTRANSITION 16”

30 OUTPUT Error-det;“STATUS:OPERATION:ENABLE 16”

40 OUTPUT Error-det;“*SR.E 128”

50 END

Line 10 assigns the error detector address to variable Error-det.

Line 20 sets bit 9 the Operation Status Enable register which causes the start or end of the
measurement period to set the OPER summary bit in the Status Byte register.

Line 30 enables the Transition Filter to pass a positive transition in bit 4 of the Operation
Status Condition register. The default state is to pass positive transitions, therefore this step
is in fact unnecessary.

Line 40 sets the Service Request Enable register to produce a service request if bit 7 (OPER)
is set in the Status Byte register.

Line 50 terminates the program.

A more practical example of using the service request in a program would be to detect the end
of the measurement period and then collect and display results. The following program gives
an example of this.

10 ! Program name PROC-S4-1
20 !
30 ! This program demonstrates the use of the service request. It
40 ! sets up the Error Performance Analyzer system to perform a basic
50 ! error count measurement at 1 CHz and uses the service request
60 ! to indicate the end of the measurement period. On recipt of
70 ! the service request the program then collects the error count
80 ! result from the sysytem.
90 !
100 PRINT CHR$(12) ! Clear the screen.

Interrogating the Instrument Status 3-15

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

Error_det=717
Pattern_gen=718
CON Error-det
A=SPOLL(Error-det)

! Assign HP-IB addresses to variables.

ON INTR 7 CALL Init-serv ! Assign interrupt branch.
ENABLE INTR 7;2 ! Arm the computer to recognize an SRD.
DISP "RESETTING ERROR DETECTOR"
OUTPUT Error-det;"*RST;*CLS" ! Reset system.
DISP "RE-SETTING PATTERN GENERATOR"
OUTPUT Pattern-gen;"*RST;*CLS"
OUTPUT Pattern-gen;"SYSTEM:PTHROUGH '*RST;*CLS'"
DISP "SETTLING TIME 3 SECONDS"
WAIT 3 ! Allow settling time.
! Configure Status registers:

OUTPUT Error-det;"STATUS:OPERATION:PTRANSITION 0;NTRANSITION 16"
OUTPUT Error-det;"STATUS:OPERATION:ENABLE 16"
OUTPUT Error-det;"*SRE 128"
OUTPUT Pattern-gen;"SYSTEH:PTHROUGH 'FREQUENCY 1GHZ'"
OUTPUT Pattern-gen;"SYSTEH:PTHROUGH 'AMPLITUDE +ODBM;AMPLITUDE:STATE ON'"
DISP "WAITING FOR FREq TO SETTLE"
CALL Check-freq
DISP "STARTED GATING"
OUTPUT Error-det;"GATE:MODE SINGLE"
OUTPUT Error-det;"GATE:PERIOD 5;STATE ON"
CALL Waiting
END
SUB Init-serv ! This is the interrupt service routine which reads the

! Status Byte, clearing the SRQ, and then reads the
! Operation Status register to confirm that the measurement
! has ended. On confirming this, it then gets the results.

CON Error-det
Status-byte=SPOLL(Error-det)
OUTPUT Error-det;"STATUS:OPERATION:EVENT?"
ENTER Error-det;Event-reg
IF BIT(Event_reg,4) THEN

DISP "SRCj Received - fetching results"
BEEP 600.1.5
CALL Fetch-results

ELSE
DISP "Result Invalid"

END IF
DISP " "

SUBEND
SUB Fetch-results ! This routine simply displays error count and ratio.

COM /Eom/ Measurement-end
COM Error-det
PRINT CHR$(l2)
OUTPUT Error-det;"FETCH:ECOUNT?"
ENTER Error-det;Error-count
OUTPUT Error-det;"FETCH:ERATIO?"
ENTER Error,det;Error-ratio
PRINT "Error Count is" Error-count
PRINT "Error Ratio is":Error-ratio
Measurement-end=1

SUBEND

3-16 Interrogating the Instrument Status

660 SUB Check-freq ! This subroutine ensures the received frequency from
670 Read-freq: ! the signal Generator is stable.
680 COM Error-det
690 OUTPUT Error-det;"FETCH:SENSE:!:FREqUENCY?"
700 ENTER Error-det;Frequencyl
710 DISP "FREQUENCY =";Frequencyl
720 WAIT 1
730 OUTPUT Error_det;"FETCH:SENSE2:FREQUENCY?"
740 ENTER Error-det;FrequencyZ
750 DISP "FRECjUENCY =";Frequency2
760 IF Frequencyi<>Frequency:! THEN Read-freq
770 SUBEND
780 SUB Waiting
790 COM /Eom/ Measurement-end
800 Elapsetime=TIMEDATE
810 Wait-loop: ! This routine simply marks time.
820 DISP "RUNNING TIME SO FAR = ";TIMEDATE-Elapsetime
830 IF Measurement-end THEN SUBEXIT
840 GOT0 Wait-loop
850 !
860 SUBEND

Figure 3-10. Service Request Example Program

Service Requests and Master mode

Setting a master instrument to generate a service request is a straightforward exercise and the
principle is the same in each case.

When a service request occurs, tracing the source of the service request requires that the
Status Byte in each instrument be tested.

Service Requests and Slave mode

To set a slave instrument to generate a service request requires that the instruments registers
be accessed using the SYSTEM:PTHROUGH command. For more information on the
SYSTEM:PTHROUGH comma.nd refer to Section 2.

Tracing the source of a service request in a slave instrument is a little different. If a slave
instrument issues a service request it not only sets bit 6 (RQS bit) of its own Status
Byte register, it also sets a bit 1 of its masters Status Byte register. Bit 1 in the Pattern
Generator’s Status Byte register is designated the slave service bit and it indicates that the
slave Signal Generator instrument has requested service.

Interrogating the Instrument Status 3-17

System Command Reference Section

About this Chapter
This chapter describes the command syntax of the pattern generator and error detector.

Syntax Diagrams

Syntax diagrams accompany the description of each root command. Commands in solid boxes
are required commands and those in dashed boxes are implied commands. Parameters in solid
boxes are required parameters and those in dashed are optional parameters.

Implied Commands

Implied commands appear in dashed boses in the syntax diagrams and in square brackets
in the text. If a command immediately preceding an implied command is used, the system
assumes the implied command is also being used and expects the required parameters of the
implied command.

Query Commands

Any value that can be set can also be queried, therefore the query form of each command is
not shown in the syntax diagrams or in the text. Where a command ending in a question
mark does appear, it is a query only command.

Command Abbreviations

Commands may be up to twelve characters long but a short-form version is also available
which has a preferred length of four characters. In this document the long-form and
short-form versions a.re shown as a single word with the short-form being shown in upper-case
letters. For example, the long-form node command SDURce has the short-form SOUR.

Note Accessing large patterns can take several minutes. Control programs must be
prepared for I/O timeouts of this order.

System Command Reference Section 4-1

Instrument Configuration
The pattern generator and error detector that comprise the system can be configured as
separate modules or as a composite instrument with the pattern generator as a slave to
the error detector. This configuration is done by setting the addresses of the two modules
appropriately3.

There is a SOURce node for each of the outputs from the pattern generator and a SENSe node
for each of the inputs to the error detector. These nodes are differentiated from each other by
adding a number to the end of the node name, thus the data output is SOURcel, the clock
output SOURce2 etc.

SCPI requires the node SOURce to be allowed as an alias for SOURcel. SCPI permits
instruments that are primarily sources to allow the SOURce node to be optional, similarly
instruments that are primarily sensors may allow the SENSe node to be optional.

Behavior at Power On
At power-on, the state of the registers and filters will be:

In normal operation, the enable state of the registers and transition filters will be preserved
through a power fail.

On virgin power-on, all registers and filters are disabled except: 1) the PON, CME and
EXE bits of the Standard Event Status Register and its summary bit
in the Status Byte, 2) all the assigned bits of the FAILURE register
and its summary bit in the Status Byte. In this way, the naive user
will not be swamped by SRQs. An SRQ will only be generated if the
instrument receives invalid commands or queries, or a major hardware
failure occurs. The transition filters will be set to allow all conditions
and events to pass.

The event registers and the error queue are cleared at each and every power-up.

Pattern Generator Commands
The pattern generator is primarily a source device. There is one source node for each of the
outputs present; they are numbered as follows:

SOURcel The data output. This node may also be referred to as SOURce.
SOURce2 The clock output.
SOURce3 The trigger output.

4-2 System Command Reference Section

Pattern Generator Commands
SOUFtcel

SOURceI - The Data Source

r,07R&l -c----

Figure 4-1. SOURcel Syntax Diagram

System Command Reference Section 4-3

Pattern Generator Commands
SOURcel

:PATTern

This node selects and defines the attributes of the pattern being generated.

[:SELect] <character data>

This node defines the type of pattern being generated. The <character data> is one of:

PRBSn>
ZSUBstitut<n>
MDENsityG0
UPATtern<n>
AWORd

<n> = 7,10,15,23 or 31
<n> = 7,10,11, or 13
<n> = 7,10,11, or 13
<n> = 0,1,2,3,4,5,6,7,S,g,lO,ll, or 12

Note that if a user pattern is selected and the [:SELECT]? command is used, then the
response is “IJP.4T”; no <n> is appended.

The *RST selection is PRBS23.

:ZSUBstitut

This is a contraction of the phrase: Zero SUBstitution and is used for defining patterns in
which a block of bits is replaced by a block of zeros.

[:ZRUN] <numeric value>. This is a contraction of the phrase: Zero RUN, and is the length,
in bits, of the longest run of zeros in the pattern. The zeros that are added for the Zero
Substitution function replace the bits that immediately follow this longest run of zeros and the
length of the overall block of zeros is the value set by the ZRUN command. The range of values
is:

MINimum The length of the longest run of zeros in the unmodified pattern. (eg for a 27
pattern this value is 7.)

MAXimum The length of the pattern minus one.

The *RST selection is 13.

:MDENsity

This is a contraction of the phrase: Mark DENsity and is used for defining a pattern in which
the density of marks may be set by the user.

[:DENSity] <numeric value>. Sets the density of marks in the output pattern. The mark
density may be varied in eighths, from one to seven eighths, (but excluding $ and 2).

The *RST selection is 6.

:UPATtem<n>

This is a contraction of the phrase: User PATtern and is used to define the contents of a
pattern store. The value <n> must be in the range 1 through 12.
The commands under this node affect the storage of information as defined in the table below:

<n> = 0 Current pattern

<n> = 1 thru 4 Non-volatile RAM storage

<n> = 5 thru 12 Disc storage

4-4 System Command Reference Section

Pattern Generator Commands
SOURcel

[:LENGth] <numeric value>. This command sets the length of the pattern that is to be
generated. When an alternate user-defined pattern is selected, the :LENGth refers to each half
of the pattern. The pattern length has the following constraints:

1. 1 bit to 32 kbits in 1 bit steps,
2. 32 kbits to 64 kbits in 2-bit steps,
3. 64 kbits to 128 kbits in 4-bit steps,
4. 128 kbits to 256 kbits in 8-bit steps,
5. 256 kbits to 512 kbits in 16-bit steps,
6. 512 kbits to 1 Mbits in 32-bit steps,
7. 1 Mbit to 2 Mbits in 64-bit steps,
8. 2 Mbits to 4 Mbits in 128-bit steps,

The *RST command leaves this selection unchanged.

Note
I

vi?

Accessing large patterns can take several minutes. Control programs must be
prepared for I/O timeouts of this order.

:LABel <string>. Defines a character string of up to 14 characters that is associated with the
pattern. This is to make it easy for the user to comprehend the purpose of the particular
pattern without having to refer to a lookup table.

The character data values of MINimum, MAXimum and DEFault are not defined for the
label.

The *RST command lea.ves this selection unchanged.

:USE STRaight(APATtern. Defines the use of a user-defined pattern. When STRaight is selected
the whole of the pattern is repeatedly output. When APATtern is selected the pattern is
considered to be composed of two halves. The “:APCHange” command controls how these
two halves are output.

The “USE” command also resets the selected pattern store. If “USE STRaightI’ is used, the
store is set to have a length of 1 bit; this data bit is set to zero and the trigger bit is set to
zero. If “USE APATtern” is used, the store is set to have a length of 128 bits for each half
pattern; all bits are set to zero and the trigger is set to occur on the A-B changeover.

For user-patterns used in the STRaight mode, the recommended sequence of issuing
commands is:

PATTern:UPATtern<n>:USE STRaight

PATTern:UPATtern<n>[:LENGth] <numeric value>

PATTern:UPATtern<n>:DATA <block data>

SOURce3:TRIGger:UPATtern<n> <numeric value>

System Command Reference Section 4-5

Pattern Generator Commands
SOURcel

For user-patterns used in the APATtem mode, the recommended sequence of issuing
commands is:

PATTern:UP.4Ttern<n>:USE APATtern

PATTern:lfPATtern<n>[:LENGth] <numeric value>

PATTern:UPATtern<n>:DATA A,<block data>

PATTern:UPATtern<n>:DATA B,<block data>

SOURce3:TRIGger:UPATtern<n> ABCHangelSOPattern

The ‘RST command lea.ves this selection unchanged.

:DATA [A/B,] <block-data>. Sets the bits of the pattern. The bits are sent as an arbitrary
block diagram data element. The data may be sent 1 bit/byte or 8 bits/byte, under the
control of the :FORMAT[:DATA] command. If 1 bit/byte is selected numeric values of either
binary 1 or binary 0 only are allowed. If 8 bits/byte is selected the left-most bit of the first
byte received forms the first bit of the pattern.

If “:USE AP.4Ttern” is selected, then the first parameter indicates which half pattern is
to receive the data. If “USE STRaight ” is selected, either “A” or no first parameter are
acceptable.

The length of the <block data> embedded in the header refers always to the length in bytes
irrespective of the current setting of the [:DATA] PACKed, <numeric value> command.

The character data values of MINimum, MAXimum and DEFault are not defined for the data.

To be consistent with the behavior of the pattern editor, more bits may be sent than are
specified by the “LENGth” command, in which case the extra bits will be ignored and will not
appear as part of the pattern. If the pattern length is subsequently extended the extra bits
are filled with zeros. If fewer bits than specified by the “LENGth” command are sent, then
the bits in the store beyond the length sent remain unchanged.

4-6 System Command Reference Section

Pattern Generator Commands
SOURcel

The pattern stores 1 through 4 have an overall length of 8192 bits, and pattern store 0 and 5
through 12 have an overall length of 4,194,304 bits

The following rules apply:

1. If ‘PATTernFORMat PACKed,l’ is selected and data is sent with the
’ :UPATtern:DATA ’ command, then:
block length = pattern length

2. If ‘PATTern:FORMat PACKed,l’ is selected and data is sent with the
‘:UP.L\Ttern:IDATa’ command, then:
block length = number of relevant bits in block
(start bit + block size) <= pa.ttern length
block size >= 1

3. If ‘PATTern:FORMat PACKed, 8’ is selected and data is sent with the
‘:UPATtern:DATA’ command, then:
block size =((pattern length - 1) DIV 8) + 1

4. If ‘PATTern:FORMat PACKed,8’ is selected and data is sent with the
’ :UPATtern:IDATa’ command, then:
block size = ((number of relevant bits in block - 1) DIV 8) + 1
(start bit + block size) = ((pattern length - 1) DIV 8 + 1) * 8
block size >= 1

An arbitrary block program data element is a method of sending large quantities of data
from a controller to an instrument. It comes in two forms; an indefinite length format when
the length of the transmission is not known, and a definite Eength format when the length is
known. In the application here, the definite length format is used.

A definite length arbitrary block program data element is composed of two parts; a header
and the data itself. The header is made up from three parts:

1. The first part is the ASCII character #.

2. The second part is a single non-zero ASCII digit. The magnitude of this digit equals the
number of digits in the third part of the header.

3. The third part is composed of between 1 and 9 ASCII digits. The value of these digits
taken together as a decimal integer equal the number of 8-bit data bytes which follow.

The data part is composed of a number of s-bit data bytes.

As an example, if a user-pattern of length 798G bits is to be set up, then the header would be
#47986.

The *RST command leaves this selection unchanged.

:IDATa [AJB,] <start-bit>, <length-in-bits>, <block-data>

This command is similar to the :DATA command. The header is short for Incremental Data
and the command is used to download just part of a user-defined pattern.

System Command Reference Section 4-7

Pattern Generator Commands
SOURcel

If “:USE APATtern” is selected, then the first parameter indicates which half pattern is
to receive the data. If “USE STRaight ” is selected, either “A” or no first parameter are
acceptable.

The length of the <block data> embedded in the header refers always to the length of the
data in bytes.

The first parameter defines the starting position within the overall pattern of the first bit of
the transmitted pattern. The first bit is counted as bit zero. The second parameter defines
how many bits are to be transmitted and the third parameter provides the data itself.

The query form of the command is of the format “:IDATa? <start bit> ,<length in bits>“.
The second parameter defines the length (in bits) of the data block to be output.

4-8 System Command Reference Section

Pattern Generator Commands
SOURcel

Example 1 - - Use of the :DATA command

Set user-defined pattern store 5 to a length of 9 bits. Let the new data bits be 1 , 0 , 0, 1 , 1 , 0,
1, 1, 1 (binary). Then query the contents of this pattern store.

Method 1: using data packed 1 bit per byte.

PATT:FORM PACK,1
PATT:UPATS 9
PATT:UPAT5:DATA #19<data>

where # = the start of the header
1 = the number of decimal digits to follow forming the length
9= the length of the data block that follows

<data> = 9 data bytes containing binary 00000001
00000000
00000000
00000001
00000001
0000000~
00000001
00000001
00000001

PATT:UPAT5:DATA?

would return #19<data>

where # = the start of the header
1 = the number of decimal digits to follow forming the length
9= the length of the data block that follows

<data> = 9 data bytes containing binary 00000001
00000000
00000000
00000001
00000001
00000000
00000001
00000001
00000001

System Command Reference Section 4-9

Pattern Generator Commands
SOURcel

Method 2: using data packed 8 bits per byte.

PATT:FORM PACK,8
PATT:UPAT5 9
PATT:UPAT5:DATA #12<data>

where # = the start of the header
1 = the number of decimal digits to follow forming the length
2 = the length of the data block that follows

<data> = 2 data bytes containing binary 10011011 and
lxxxxxxx

PATT:UPATS:DATA?

would return #12<data>

where # = the start of the header
1 = the number of decimal digits to follow forming the length
2 = the length of the data block that follows

<data> = 2 data bytes containing binary 10011011 and
10000000

4-10 System Command Reference Section

Pattern Generator Commands
SOURcel

Example 2: Use of the :IDATa command

Update 9 bits of store number 5 starting at bit 3. Let the new data bits be 1, 0, 0, 1, 1 , 0, 1,
1, 1 (binary). Then query these 9 bits.

Method 1: using data packed 1 bit per byte.

PATT:FORM PACK,1
PATT:UPATS:IDAT 3,9,#19<data>

where 3 = the start bit
9 = the number of bits
= the start of the header
1 = the number of decimal digits to follow forming the length
9 = the length of the data block that follows

<data> = 9 data bytes containing binary 00000001
00000000
00000000
00000001
00000001
00000000
0000000 1
00000001
00000001

PATT:UPATS:IDAT? 3,9

would return #19<data>

where # = the start of the header
1 = the number of decimal digits to follow forming the length
9= the length of the data block that follows

<data> = 9 data bytes containing binary 00000001
00000000
00000000
00000001
00000001
00000000
00000001
00000001
00000001

System Command Reference Section 4-11

Pattern Generator Commands
SOURcel

Method 2: using data packed 8 bits per byte.

PATT:FORM PACK,8

PATT:UPAT5:IDAT 3,9,#12<data>

where 3 = the start bit
9 = the number of bits
t = the start of the header
1 = the number of decimal digits to follow forming the length
2 = the length of the data block that follows

<data> = 2 data bytes containing binary 10011011 and
lxxxxxxx

PATT:UPATS:IDAT? 3,9

would return #12<data>

where # = the start of the header
1 = the number of decimal digits to follow forming the length
2 = the length of the data block that follows

<data> = 2 data bytes containing binary 10011011 and
10000000

:FORMat:

This command controls the format of data transfer for the :PATTern:UPATtern<n>:DATA
and :PATTern:UPATtern<n>:IDATa commands.

[:DATA] PACKed,<numeric value>. This command permits the packing of bits within a byte to
be set. The First parameter must be PACKed. The <numeric value> parameter may be set
to either 1 or 8.

Note that if a user pattern is selected and the [:SELect]? comma.nd is issued, then the
response if “UPAT”; no ‘<n>’ is appended.

The *RST selection is “PACKed.1”.

:AWORd

This is a contraction of the phrase: Alternate WORH and is used to set the pattern used by
the two alternating words.

:DATA<n> <NRf>{,<NRf>}. Since the length of the alternate word is fixed at 16, then failure
to send exactly sixteen parameters will cause an error. The value <n> may be either 0 or 1,
and corresponds to the word that is emitted and the value of the ” AUX INPUT” input that
controls it.

The *RST selection is 0101010101010101 0000000011111111.

4-12 System Command Reference Section

Pattern Generator Commands
SOURcel

:APCHange

This is a contraction of the phrase alternate pattern change and is used to control how
user-defined patterns are output when set to be used as alternate patterns.

:SOURce EXTernalliNTernal. This command control the source of control for the alternate
pattern output. When EXTernal is selected the pattern is controlled by the rear-panel
Auxiliary Input socket. When INTernal is selected the pattern is controlled by the user, either
from the front-panel or from HP-IB using other commands from within this group.

The *MT selection is “EXTernal”.

:MODE ALTernatelONEShot. This command controls the mode of operation of the alternate
pattern output. If ALTernate is selected and the source is set to EXTernal, then the polarity
of the signal at the Auxiliary Input socket governs which half of the pattern is output. If the
source is set to INTernal, then the :APCHange:SELect command control which half of the
pattern is output.

If the MODE is set to ONEShot and the source is set to EXTernal, then one instance of half
B of the pattern is output for each rising edge of the Auxiliary Input. If the source is set to
INTernal, then the :APCHange:IBHalf command is used to insert one instance of half B of the
pattern.

The *RST selection is “ALTernate”.

:SELect AHALflBHALf. This command controls whether half A or half B of the alternate
pattern is output. It is valid only when :APCHange:SOURce is set to INTernal and
:APCHange:MODE is set to ALTernate.

The *RST selection is “AHALf”.

:IBHalf ONCE:. This command is short for Insert B Half. It causes the single insertion of a
number of insta.nces of half B of the alternate pattern to be inserted. It is valid only when
:APCHange:SOURce is set to INTernal and :APCHange:MODE is set to ONSHot. It is an
event command, and as such has no query form. The number of half *B’ insertions is equal to
the smallest integral multiple of the pattern length that divides exactly by 128.

:EADDition ONCEJ<boolean>

This is a contraction of the phrase: Error ADDition and is used to control the addition of
errors into the generated pattern. The parameter ONCE causes a single bit error to be added
to the pattern. It also turns off the constant rate error addition.
A boolean parameter enables/disables the addition of errors at a fixed rate.

The *RST selection is OFF.

:SOURce EXTernallFIXed. This comma.nd controls the source of injected errors. When set to
EXTernai (and :EADDition[:STATe] is ON), each pulse at the External Errors socket causes
an error to be added to the data stream. When set to FIXed (and :EADDition[:STATe] is
ON), repetitive errors are internally added to the data stream. The rate of error addition is
controlled by the :EADDition:RATE command.

System Command Reference Section 4-13

Pattern Generator Commands
SOURcel

The *RST selection is “FIXed”.

:RATE <numeric value>:. This command controls the rate of internal, fixed error addition.
Values between le-3 and le-9 in decade steps are permitted.

The *RST selection is le-6.

:VOLTage

This node sets the values of the data. output electrical levels.

[:LEVel][:IMMediate][:AMPLitude] <numeric value>

Sets the peak to peak value of the data signal, in units of Volts.

See the section entitled Handling Coupled Parameters.

The *RST selection is 500 mV.

[:LEVel][:IMMediate]:HlGH <numeric value>

This is used to set the DC high output level, in units of Volts.

See the section entitled Handling Coupled Parameters.

The *RST selection is 0 V.

:AlTenuation-<numeric-value>

Specifies, in decibels, the value of external attenuation on the output. This causes the
entered/displa.yed values to be modified so as to reflect the value of the output on the far side
of the attenuator.

See the section entitled Handling Coupled Parameters.

The *RST selection is 0 dB.

:ECL

Sets the output AMPLitude and HIGH values to those used for the ECL family.

There is no query form of this command.

4-14 System Command Reference Section

Pattern Generator Commands
SOURceP

SOURce2 - The Clock Source

.P
I_ -:_LE_v_“_ _- :IMMedtate/

Figure 4-2. SOURce2 Syntax Diagram

:FREQuency[:CWI:FIXed]? <numeric value>

Queries the bit rate of the measured clock frequency at the input of the Pattern Generator.

:VOLTage

This node sets the values of the clock output electrical levels.

[:LEVel][:IMMediate][:AMPLitude] <numeric value>

Sets the peak to peak value of the clock signal, in units of Volts.

See the section entitled Handling Coupled Parameters.

The *RST selection is 500 mV.

[LEVel][:IMMediate]:HlGH <numeric value>

This is used to set the DC high output level, in units of Volts.

See the section entitled Handling Coupled Parameters.

The *RST selection is 250 mV.

:AlTenuation <numeric value>

Specifies, in decibels, the value of external attenuation on the output. This causes the
entered/displayed values to be modified so as to reflect the value of the output on the far side
of the attenuator.

See the section entitled Handling Coupled Parameters.

The *RST selection is 0 dB.

:ECL

Sets the output “AMPLitude” a.nd “HIGH” values to those used for the ECL family. There is
no query form for this command.

System Command Reference Section 4-15

Pattern Generator Commands
SOURce3

SOURce3 - The Trigger Source

_.___ -_-_
: soLRce3 : :TRIGge-

q:CTDRatlo?+returns - INR3 res~onsei

Figure 4-3. SOURce3 Syntax Diagram

:TRlGger

This node permits the attributes of the trigger output to be set up.

[:MODe] PATTernIDCLock

This node is for specifying the mode of the trigger output. The possible modes are:

P a t t e r n The trigger pulse is output coincident with the occurrence, in the data
output stream, of a particular pattern of bits.

Divided Clock The trigger pulse is simply the input data clock divided by a fixed value.

The *RST selection is PATTern.

:CTDRatio? <NR3>. The command is short for Clock to Trigger Division ratio. It gives the
ratio between the frequency of the clock output and the frequency of the pulses on the trigger
output for the currently selected pattern.

If alternate patterns are selected and the trigger is set to occur on input, then no division
ratio is available and this command responds with Not-A-Number (NAN, 9.91xE+37).

:PRBS<n> <NRf>{,<NRf>}

This command sets the pattern, the occurrence of which causes a trigger pulse to be output.
The number n must one of 7, 10, 15 or 23. The number of parameters depends on the
pattern length, and is the minimum that can define a unique place in the overall pattern, for
example a pattern of length 2n-’ the number of parameters is n. The parameter values are
either 1 or 0. An all-ones pattern is disallowed.

The *RST selection is ALL ZEROS for n = 1 through 4.

4-16 System Command Reference Section

Pattern Generator Commands
SOURce3

:ZSUB<n> <numeric value>

This command selects the position within the PRBS at which the trigger pulse is to be output
whenever a Zero Substitution PRBS is selected. The number ‘n’ must be one of 7, 10, 11 and
13. The parameter must be in the range 0 through (pattern length - 1).

The *RST selection is 0 for n = 7, 10, 11 and 13.

:MDEN<n> <numeric value>

This command selects the position within the PRBS at which the trigger pulse is to be output
whenever a Mark Density PRBS is selected. The number ‘n’ must be one of 7, 10, 11 and 13.
The parameter must be in the range 0 through (pattern length - 1).

The *RST selection is 0 for n = 7, 10, 11 and 13.

:UPAT<n> <numeric value>

This command selects the position within the PRBS at which the trigger pulse is to be output
whenever a Zero Substitution PRBS is selected. The number ‘11’ must be in the range 0 thru
12. The parameter must be in the range 0 through (pattern length - 1).

The commands under this node affect the storage of information as defined in the following
table:

<n> = 0 Current pattern

<n> = 1 thru 4 Non-volatile RAM storage

<n> =5 thru 12 Disc storage

The *RST selection is 0 for n = 0 through 4.

:APATtern<n> ABCHangelSOPpattern. This command control the trigger output when an
alternate pattern is selected for output. If SOPpattern (short for Start Of Pattern) is selected,
then a trigger pulse is output at the start of the pattern. If ABCHange (short for A-B change)
is selected, then the trigger output changes as the alternate halves change.

The commands under this node affect the storage of information as defined in the table below:

<xi> = 0 Current pattern

<n> = 1 thru 4 Non-volatile RAM storage

<n> = 5 thru 12 Disc stora.ge

The *RST selection is ABCHa.nge.

System Command Reference Section 4-17

Pattern Generator Commands
OUTPutl

OUTPutI - The Data Output

:DELay space

:TERMmation

Figure 4-4. OUTPutl Syntax Diagram

This node is used to control electrical characteristics of the data output.

[:STATe] <boolean>

This node controls the data output. When OFF, the output is set to OV.

The *RST selection is ON.

:POLarity NORMal}lNVerted

Sets the polarity of the data output.

The *RST selection is NORMal.

:DELay <numeric value>

Sets the delay of the active edge of the clock output relative to the data output. The units are
seconds. The value is rounded to the nearest one picosecond.

The *RST selection is 0 ps.

4-18 System Command Reference Section

Pattern Generator Commands
OUTPutl

:TERMination <numeric value>

Enables the data termination level to be selected as 0 V’olts or -2 Volts.

See the section entitled Handling Coupled Parameters.

The *RST selection is 0 V.

:OPTimize DATAlDADBar

This node controls the optimization used for the data output signal eye crossover. When
DATA is selected the crossover symmetry is optimized for the normal data signal alone. Whell
DADBar (short for data and data bar) is selected the crossover symmetry is optimized as a
compromise between the normal and inverted signals.

The *RST selection is DATA.

System Command Reference Section 4-19

Pattern Generator Commands
Clock Output
MMEMory

OUTPut - The Clock Output

OUTPut :TERMmatton

Figure 4-5. OUTPut Clock Output

This node is used to control electrical characteristics of the clock output.

:TERMination <numeric value>

Enables the clock termination level to be selected as 0 Volts or -2 Volts.
See the section entitled Handling Coupled Parameters.
The *RST selection is 0 V.

MMEMORY

-+ZG+-- relurm - <NR3>.CNR3>.I<NKW

Figure 4-6. Memory

This subsystem is used for controlling the floppy disc used as mass memory with the
instrument. It is recommended that a floppy disc is reserved for sole use by the HP 70841B.

Note: disc accesses by a slaved pattern generator should not be performed whilst the mastel
error detector is gating.

INlTialize

The INITialize command is used to initialize the floppy disc mass storage medium.
Both 720 kbyte DOS and 1400 kbyte DOS formats are supported. The instrument
automatically detects the disc capacity and formats accordingly.

This command is an event and has no *RST condition.

4-20 System Command Reference Section

Pattern Generator Commands
Clock Output

MMEMory

DELete <file name>
The DELete command removes a file from the floppy disc. The <file name> parameter speci-
fies the file name to be removed. It is a string parameter. File names are ‘HPPATxx.DAT,’
where xx ranges from 05 through 12. For example to delete disc pattern 7. the command
would be “MMEM:DEL ‘HPPAT 07.DAT”‘.

This command is an event and has no *RST condition or query form.

CATalog? <NR3>,<NR3>{ ,<file entry>}

The CATalog? command is query-only and returns information on the current contents
and state of the floppy disc. Upon a CATalog? query, the instrument reads the floppy
disc and returns its directory information. The information returned is composed of two
numeric parameters followed by as many strings as there are files in the directory list. The
first parameter indicates the total amount of storage currently used in bytes. The second
parameter indicates the total amount of storage available, also in bytes. The <file entry> is a
string. Each <file entry> indicates the name, type and size of one file in the directory list:

<file name>,<file type>,<file size>

The <file size> is returned in bytes. The number of <file entry> items that is returned is
limited to eight.

MPResent? <boolean>

This command is short for “Media Present”. It returns a boolean indicating whether a floppy
disc is present.

CPDisc <NRl>

The mnemonic ICPDisc is short for Copy Pattern to Disc. The parameter provides the
destination store number, and must be between 5 and 12 inclusive.

ICPDisc <NRl>,<NRl>,<NRl>,<NRl>

The mnemonic ICPDisc is short for Incremental Copy Pattern to Disc. It is used to copy just
a portion of the current edit buffer to disc. If used on alternate patterns then the pattern half
needs to be specified. The four parameters are:

Parameter No. 1: The destination store number, between 5 and 12.

Parameter No. 2: The pattern half;

For a straight pattern= 0

For an alternate pattern= 0 for half A and 1 for half B.

Parameter No. 3: The first bit of the block to copy to disc.

Parameter No. 4: The last bit of the block to copy to disc.

System Command Reference Section 4-21

Pattern Generator Commands
SYSTem

SYSTem
This subsystem is mostly defined by SCPI for functions that are not related to instrument
performance.

SY STem :BEEPer

:KLOCk boolean

Figure 4-7. SYSTem Syntax Diagram

:BEEPer

This subsystem controls the audible beeper.

The :BEEPer command produces a beep only if a Display unit is connected and the Pattern
Generator has been assigned a window.

[:IMMediate] [<freq>[,<time>[,<vob]]]

Causes an audible tone to be generated. The optional parameters <freq>, <time> and <vol>
are intended (in SCPJ) to set the frequency, duration and volume of the beep; however, they
are not implemented. A fixed beep is always generated.

The pattern generator accepts these parameters, but ignores them.

There is no query form of this command.

:ERRor? <NRl>,<string>

This query-only command will pull the next error from the error queue, and return the error
number and a string describing the error. The error queue is of depth ten.

Note
1

vl?

SCPI-defined errors are all negative. The positive error numbers are device
defined. The SCPI Messages section at the rear of this manual describes the
SCPI-defined errors and Appendix C of the Operating Manual contains details
of the device-defined errors.

4-22 System Command Reference Section

Pattern Generator Commands
SYSTem

:KLOCk <boolean>

This locks the instrument’s keyboard. When locked, the user may not modify any of the
instrument’s configuration; although those keys that merely affect the display are still usable.

The *RST selection is OFF.

:PRESetl:PRESet<n>

Sets the pattern generator to a pre-defined local operation state. The choice of <n> is 0
through 2. PRESet and PRESet 0 both have the same effect as the front-panel (INSTR PRESET)

key. PRESet 1 and PRESet 2 have the same effect as the front-panel recall setup,

PRESET 1 and PRESET 2 keys respectively.

:PTHRough

The Pass-Through command allows a remote programming command to be passed through
an MMS master module to a slave module. All valid remote commands for the slave can
be passed through in this way. The command intended for the slave is given as a string
parameter to the PTHRough command. The master pays no attention to the contents of this
parameter.

[:STRing] <string>

The <string> parameter is passed through in its entirety to an MMS slave. The format of
the parameter must be identical to the HP-IB command that would have been given to the
slave had it been setup as an independent master. If the slave module detects an error in the
<string> parameter passed through to it, it will generate an error in its error queue and set
bit 1 of the master’s Status Byte.

If no slave is present when the pass-through command is received, the error “slave needs
service” is generated.

Example:

To set the frequency of an HP 70312A clock source (slaved to a master pattern generator) to
2.5 GHz, the following command could be issued:

OUTPUT pgen ; “SYST:PTHR ““FREQ 2 . 5 CHZ”“”

Note The string parameter itself needs to be enclosed within quotation marks.
Since the whole output string is already enclosed within double quotation
marks, then the inner-most set must be represented by a quadruple set.
Alternatively, a single set of single quotation marks may be used:

System Command Reference Section 4-23

Pattern Generator Commands
SYSTem

OUTPUT pgen ; "SYST:PTHR 'FREQ 2.5 GHZ'"
[:STRing]? <string>?. This command permits a query command to be passed through to the
slave. Note that a question mark is needed to terminate the header; and another to terminate
the <string> since the string is itself a header when received by the slave.

If no slave is present when the pass-through query command is received, an error is generated
and a null string is returned.

Example:

To query the current frequency setting of an HP 70312A clock source, the following commands
could be used:

OUTPUT pgen ; “SYST :PTHR? 'FREQ?"'
ENTER pgen ; freq

Note
I

vi?

If the string parameter sent to the slave contains an error one of the following
can occur:

m The slave will generate an error in its error queue and set bit 1 of the
master’s status byte.

m For Query commands only: the instrument can hang-up; no error message is
reported. The instrument must be powered down, then powered up, and the
string parameter checked/corrected.

:VERSion?

This command queries the version of the SCPI programming Language that the pattern
generator conforms to. The command currently returns ” 1990.0”.

4-24 System Command Reference Section

Pattern Generator Commands
STATUS

STATUS

The status conditions that the pattern generator needs to report are partly covered by the
pre-defined status registers of IEEE 488.2 and SCPI.

Two additional status registers covers instrument hardware failure conditions and MSIB
slaves.

:FAILure
[:EVENt]? <NRl>

:SSERvice
[: : EVENtI ?
:ENABle
:ENABle?

<NRl>
<NRf>
<NRl>

Status Byte

If an MMS slave module detects an error that would have caused an SRQ to be generated
when operating as an independent master, then bit 1 of the Status Byte of the master MMS
module is set. This bit is called ‘Slave service’. In this way, the master module can relay the
error situation to the external controller. The controller can then serial poll the master, detect
that it is the slave module that has an error, and interrogate the slave’s Status Byte and error
queue.

:OPERation

The OPERation register (and summary bit) is defined by SCPI, but is unused in the pattern
generator.

:QUEStionable

The bits in this register indicate that a signal is of questionable quality. The usage by the
pattern generator is as follows:

SCPI MEANING pattern generator usage

0 - VOLTage

1 - CURRent

2 - TIME

3 - POWer

4 - TEMPerature

5 - FREQuency

6 - PHASe

7 - MODulation

8 - CALibration

9 - Instr dependent Clock loss.

10 - Instr dependent

System Command Reference Section 4-25

Pattern Generator Commands
STATUS

11 - Instr dependent

12 - Instr dependent

13 - Instr summary

14 - Unexpected param

15 - Zero

:PRESet

The PRESet command is an event that configures the SCPI and device dependent status data
structures, such that the device dependent events are reported at a higher level through the
mandatory part of the status reporting structures.

The PRESet command affects only the enable register and the transition filter registers for the
SCPI mandated and device dependent status data structures. PRESet does not affect either
the status byte or the standard event status as defined by IEEE 488.2. PRESet does not clear
any of the event registers. The *CLS command is used to clear all event registers in the device
status reporting mechanism.

For the device dependent status data structures, the PRESet command sets the enable register
to all ones and the transition filter to recognize both positive and negative transitions. For
the SCPI mandatory status data structures, the PRESet command sets the transition filter
registers to recognize only positive transitions and sets the ena.ble register to zero.

:FAILure

The bits in this register indicate that a major hardware element of the instrument has failed.
No capability is provided to query the condition register, setup the enable register, nor setup
the positive or negative transition filters. This is because failures within this category are
non-recoverable, and as such the enable registers are pre-defined.

The usage by the pattern generator is as follows:

BIT pattern generator usage

0 ROM failure

1 RAM failure

2 Non-volatile memory corrupt

3 Gate Arra.y fa.ilure

4 PIT failure

5 Interface board #l failure

G Interface board #2 failure

7 MSIB failure

8 EEPROM failure

9 Undefined

10 Undefined

11 Undefined

4-26 System Command Reference Section

Pattern Generator Commands

12 Undefined

13 Undefined

14 Undefined

15 Undefined

:SSERvice

The bits in this register indicate that an MSIB slave module is requesting service. No
capability is provided to query the condition register nor setup the positive or negative
transition filters. This is because failures within this category are events.
The usage by the pattern generator is as follows:

BIT pattern generator usage
0 slaved clock source or signal generator
I thru 15 undefined

Handling Coupled Parameters
There are two groups of four commands within the pattern generator’s command set that are
coupled together, and their correct use requires an understanding of this coupling. These
commands are:

CSOURce Cl] : IVOLTage [: LEVelI [: IMMediateI [: AMPLitudeI
[SOURce Cl] : 1 VOLTage C : LEVel] C : IMMediateI [: HIGH1
[SOURce Cl] : 1 VOLTage [: ATTenuat ion]
OUTPut Cl] : TERMinat ion

[SOURce [2] :]VOLTage [: LEVel] [: IMMediateI [: AMPLitudeI
[SOURce C21: I VOLTage [: LEVel] [: IMMediateI C: HIGH]
[SOURce [2] : I VOLTage [: ATTenuationI
OUTPut Cal: TERMinat ion

The restrictions on the parameter values that these commands can take and the order in
which the commands need to be issued are as follows:

1. If a new value of attenuation is issued, then this needs to be followed with new values for
the amplitude and high-level.

2. If a new value of termination is issued, then this needs to be followed with a new value for
the high-level.

3. Whilst the attenuation is set to 0 dB, if the termination voltage is set to 0 Volts, then the
maximum value of high-level is 1 Volt. If the termination voltage is set to -2 Volts, then
the maximum value of the high-level is 0 Volts.

4. Values of high-level below -2 Volts are restricted according to the value of amplitude. This
is shown in the accompanying Figure.

5. If new values of amplitude and high-level are issued, then care needs to be exercised as
described below. Consider first the legal values that the amplitude and high-level. These
are best described with the aid of a diagram.

System Command Reference Section 4-27

Pattern Generator Commands

High Level N)
2.0

r

1.0 ir

-1.0 -

-2.c -

-3.0 -

- 4 . 0 L

:;:;' ' o.s,.;*;;;;:. 1.0 ,;*;,;,,,; 1.5 ,,,, ;,;; 2.0
I I ,',', , .',',','.','.'.'.',',',',',',,;,,z

I ReglOn o f Valid Amplitude ;I
and High-level j’,‘,‘,‘,‘;

Amplitude VI
-

Figure 4-8. Data Amplitude and High-Level Relationship

Hlgn Level M

2.0 r

1 0

F l',',',',',',','j',',',',','~',',',',',','
Amplitude N)

Figure 4-9. Clock Amplitude and High-Level Relationship

The Figures shows the region of valid amplitude and high-level. To move from the point A to
the point B, for exa.mple, requires some care. This arises because, if the amplitude is first
moved, followed by the new value of data high-level, then the intermediate state will be at
point C and this would generate an error message.

There are two methods of overcoming this problem:

1. The order of issuing the amplitude and high-level may be used to prevent the bottom
sloping line being crossed. The algorithm would be:

If the new amplitude is greater than the old amplitude, then send the new high-level
first, followed by the new amplitude.

If the new amplitude is smaller than the old amplitude, then send the amplitude first,
followed by the high-level.

2. A dummy move of the high-level to a value between 0 V and -2.0 V is followed by the new
value of amplitude, followed by the new value of high-level.

4-28 System Command Reference Section

Pattern Generator Commands

Error Detector Commands
The error detector is primarily a sensing device. There is one sense node for each of the inputs
present; they are numbered as follows:

SENSe 1 The data input. This node may also be referred to as SENSe.
SENSe2 The clock input.

System Command Reference Section 4-29

Error Detector Commands
SENSel

SENSeI- The Data Sense

Figure 4-10. SENSel Syntax Diagram

4-30 System Command Reference Section

Error Detector Commands
SENSel

:PATTer n

This node selects and defines the attributes of the pattern being generated. It is essentially
the same as the “PATTern” node in the pattern generator, with the exception that the error
detector has neither an Alternate Word mode, nor the error addition capability.

[:SELect] <character data>

This node defines the type of pattern being generated. The <character data> is one of:

PRBS<n> <n> = 7,10,15,23 or 31
ZSURst itut<n> <n> = 7,10,11, or 13
MDENsity<n> <n> = 7,10,11, or 13
UPATtern<n> <n> = 0,1,2,34 5 6 7’,8,9,10,11, or 12, , 7 ,

Note that if a user pattern is selected and the C: SELECT]? command is used, then the
response is “UPAT”; no <n> is appended.

The *RST selection is PRBS23.

:ZSUBstitut

This is a contraction of the phrase: Zero SUBstitulion and is used for defining patterns in
which a block of bits is replaced by a block of zeros.

[:ZRUN] <numeric value>. This is a contraction of the phrase: Zero RUN, and is the length,
in bits, of the longest run of zeros in the pattern. The zeros that are added for the Zero
Substitution function replace the bits that immediately follow this longest run of zeros and the
length of the overall block of zeros is the value set by the ZRUN command. The range of values
is:

MINimum The length of the longest run of zeros in the unmodified pattern. (eg for a 2?
pattern this value is 7.)

MAXimum The length of the pattern minus one.

The *RST selection is 13.

:MDENsity

This is a contraction of the phrase: Mark DENsity and is used for defining a pattern in which
the density of marks may be set by the user.

[:DENSity] <numeric value>. Sets the density of ma.rks in the output pattern. The mark
density may be varied in eighths, from one to seven eighths, (but excluding 2 and 2).

The *RST selection is g.

:UPATtern<n>

This is a contraction of the phrase: User PATtern and is used to define the contents of a
pattern store. The value <n> must be in the range 1 through 12.
The commands under this node affect the storage of information as defined in the table below:

<n> = 0 Current pa.ttern

<n> = 1 thru 4 Non-volatile RAM storage

System Command Reference Section 4-31

Error Detector Commands
SENSel

[:LENGth] <numeric value>. This command sets the length of the pattern that is to be
generated. When an alternate user-defined pattern is selected, the :LENGth refers to each half
of the pattern. The pattern length has the following constraints:

1. 1 bit to 32 kbits in 1 bit steps,
2. 32 kbits to 64 kbits in 2-bit steps,
3. 64 kbits to 128 kbits in 4-bit steps,
4. 128 kbits to 256 kbits in 8-bit steps,
5. 256 kbits to 512 kbits in 16-bit steps,
6. 512 kbits to 1 Mbits in 32-bit steps,
7. 1 Mbit to 2 Mbits in 64-bit steps,
8. 2 Mbits to 4 Mbits in 128bit steps,

The *RST command leaves this selection unchanged.

:LABel <string>. Defines a character string of up to 14 characters that is associated with the
pattern. This is to make it easy for the user to comprehend the purpose of the particular
pattern without ha.ving to refer to a lookup table.

The character data values of MINimum, MAXimum and DEFault are not defined for the
label.

The *RST command leaves this selection unchanged.

:USE STRaightlAPATtern. Defines the use of a user-defined pattern. When STRaight is selected
the whole of the pattern is repeatedly output. When APATtern is selected the pattern is
considered to be composed of two halves. The “:APCHange” command controls how these
two halves are output.

The “USE” command also resets the selected pattern store. If “USE STRaight” is used, the
store is set to have a length of 1 bit; this data bit is set to zero and the trigger bit is set to
zero. If “USE APATtern” is used, the store is set to have a length of 128 bits for each half
pattern; all bits are set to zero and the trigger is set to occur on the A-B changeover.

For user-patterns used in the STRaight mode, the recommended sequence of issuing
commands is:

PATTern:UPATtern<n>:USE STRaight

PATTern:UPATtern<n>[:LENGth] <numeric value>

PATTern:UPATtern<n>:DATA <block data>

SOURce3:TRIGger:UPATtern<n> <numeric value>

For user-patterns used in the APATtern mode, the recommended sequence of issuing
commands is:

PATTern:UPATtern<n>:USE APATtern

PATTern:UP.cZTtern<n>[:LENGth] <numeric value>

PATTern:UPATtern<n>:DATA A,<block data>

PATTern:UPATtern<n>:DAT.4 B,<block data>

4-32 System Command Reference Section

Error Detector Commands
SENSel

SOURce3:TRIGger:UPATtern<n> ABCHangelSOPattern

The ‘RST command leaves this selection unchanged.

:DATA [Ale,] <block-data>. Sets the bits of the pattern. The bits are sent as an arbitrary
block diagram data element. The data may be sent 1 bit/byte or 8 bits/byte, under the
control of the :FORMAT[:DATA] command. If 1 bit/byte is selected numeric values of either
binary 1 or binary 0 only are allowed. If 8 bits/byte is selected the left-most bit of the first
byte received forms the first bit of the pattern.

If “:USE APATtern” is selected, then the first parameter indicates which half pattern is
to receive the data. If “USE STRaight ‘I is selected, either “A” or no first parameter are
acceptable.

The length of the <block data> embedded in the header refers always to the length in bytes
irrespective of the current setting of the [:DATA] PACKed, <numeric value> command.

The character data values of MINimum, MAXimum and DEFault are not defined for the data.

To be consistent with the behavior of the pattern editor, more bits may be sent than are
specified by the “LENGth” command, in which case the extra bits will be ignored and will not
appear as part of the pattern. If the pattern length is subsequently extended the extra bits
are filled with zeros. If fewer bits than specified by the “LENGthI’ command are sent, then
the bits in the store beyond the length sent remain unchanged.

The pattern stores 1 through 4 have an overall length of 8192 bits, and pattern store 0 and 5
through 12 have an overall length of 4,194,304 bits

The following rules apply:

1. If ‘PATTern:FORMat PACKed,l’ is selected and data is sent with the
’ :UPATtern:DATA ’ command, then:
block length = pattern length

2. If ‘PATTern:FORMat PACKed,l’ is selected and data is sent with the
’ :UPATtern:IDATa’ command, then:
block length = number of relevant bits in block
(start bit + block size) <= pattern length
block size >= 1

3. If ‘PATTern:FORMat PACKed, 8’ is selected and data is sent with the
’ :UPATtern:DATA ’ command, then:
block size =((pattern length - 1) DIV 8) + 1

4. If ‘PATTern:FORMat PACKed,S’ is selected and data is sent with the
’ :UPATtern:IDATa’ command, then:
block size = ((number of relevant bits in block - 1) DIV 8) + 1
(start bit + block size) = ((pattern length - 1) DIV 8 + 1) * 8
block size >= 1

An arbitrary block program data element is a method of sending large quantities of data

System Command Reference Section 4-33

Error Detector Commands
SENSel

from a controller to an instrument. It comes in two forms; an indefinite length format when
the length of the transmission is not known, and a definite length format when the length is
known. In the application here, the definite length format is used.

A definite length arbitrary block program data element is composed of two parts; a header
and the data itself. The header is made up from three parts:

1. The first part is the ASCII character #,

2. The second part is a single non-zero ASCII digit. The magnitude of this digit equals the
number of digits in the third part of the header.

3. The third part is composed of between 1 and 9 ASCII digits. The value of these digits
taken together as a decimal integer equal the number of S-bit data bytes which follow.

The data part is composed of a number of s-bit data bytes.

As an example, if a user-pattern of length 7986 bits is to be set up, then the header would be
#47986.

The *RST command leaves this selection unchanged.

:IDATa [A/B,] <start-bit>, <length-in-bits>, <block-data>

This command is similar to the :DATA command. The header is short for Incremental Data
and the command is used to download just part of a user-defined pattern.

If “:USE APATtern” is selected, then the first parameter indicates which half pattern is
to receive the data. If “USE STRaight “ is selected, either “A” or no first parameter are
acceptable.

The length of the <block data> embedded in the header refers always to the length of the
data in bytes.

The first parameter defines the starting position within the overall pattern of the first bit of
the transmitted pattern. The first bit is counted as bit zero. The second parameter defines
how many bits are to be transmitted and the third parameter provides the data itself.

The query form of the command is of the format ” :IDATa? <start bit> ,<length in bits>“.
The second parameter defines the length (in bits) of the data block to be output.

:FORMat:

This command controls the format of data transfer for the :PATTern:UPATtern<n>:DATA
and :PATTern:UPATtern<n>:IDATa commands.

[:DATA] PACKed,<numeric value>. This command permits the packing of bits within a byte to
be set. The First parameter must be PACKed. The <numeric value> parameter may be set
to either 1 or 8.

4-34 System Command Reference Section

Error Detector Commands
SENSe 1

Note that if a user pattern is selected and the [:SELect]? command is issued, then the
response if “UPAT”; no ‘<n>’ is appended.

The *RST selection is “PACKed,l”.

:VOLTage

This node sets the values of the data input electrical levels.

:ZOTHreshold <numeric value>

This node allows the level at which the error detector discriminates between a zero and a one
to be configured.

A numeric value parameter sets the level to a given value. It also sets : ZOTHreshold : AUTO
O F F .

When in :ZOTHreshold: AUTO OFF, the query form of the :ZOTHreshold command returns the
last user-entered value. When in :ZOTHreshold:AUTO ON, the query form returns the value
automatically determined by the hardware.

If input, termination and zero-to-one level are to be set up, then the input termination should
be set up first.

The *RST selection is -1.3 V.

:AUTO <boolean>. This command enables an automatic mode in which the zero-to-one
threshold level is set to the mean of the input signal.

The query form of this command returns the current setting of the hardware discrimination
circuit.

The *RST selection is ON.

:GATE

This node controls the gating of the measurement.

[:STATe] <boolean>

Turns gating on or off.

The GATE [: STATe] ON command when in GATE : MODE SINGle is an overlapped command.

The *RST selection is OFF.

:MODE MANuallSlNGlelRepetitive

Sets the gating period mode to either Manual, Single, or Repetitive.

This command ca.uses all past results to be labelled as invalid.

Note
I

w

This is not changeable while the error detector is gating.

The *RST selection is MANual.

System Command Reference Section 4-35

Error Detector Commands
SENSel

:MANNer TIMEIERRorsIBITS

This node control the manner by which the gating period is controlled. When TIME is
selected the error detector performs SINGLE and REPETITIVE gating periods that are
controlled by elapsed time. When the selected time has accumulated, the gating period ends.

When ERRors is selected the error detector performs SINGLE and REPETITIVE gating
periods that are controlled by the accumulation of bit errors. When the selected number of bit
errors have been accumulated, the gating period ends.

When BITS is selected the error detector performs SINGLE and REPETITIVE gating periods
that are controlled by the accumulation of clock bits. When the selected number of clock
periods have been accumulated, the gating period ends.

The *RST selection is TIME.

:PERiod

This node controls the period of SINGLE and REPETITIVE gating periods.

:PERiod[:TIME] <numeric value>

When GATE:MANNer is set to TIME, this sets the duration of the gating period in seconds.
Neither a value less than 1 second not a value greater than 99 days, 23 hours, 59 minutes and
59 seconds is permitted.

This command causes all past results to be labelled as invalid.

Note
I

#

This is not changeable while the error detector is gating.

The *RST selection is 1 minute.

:PERiod:ERRors <numeric value>

When GATE:MANNer is set to TIME, this sets the duration of the gating period in bit
errors. Values of 10, 100 and 1000 are permitted.

This command causes all past results to be labelled as invalid.

Note This is not changeable while the error detector is gating.

The *RST selection is 100.

4-36 System Command Reference Section

Error Detector Commands
SENSel

:PERiod:BITS <numeric value>

When G,4TE:MANNer is set to TIk4E, this sets the duration of the gating period in clock bits
(or periods). Values of le7 through le15 in decade steps are permitted.

This command causes all past results to be labelled as invalid.

Note
I

‘4EI

This is not changea.ble while the error detector is gating.

The *RST selection is le10.

:SYNChronisat ONCEl<boolean>

This node is for configuring the settings that control synchronization of the reference pattern
to the incoming pattern.

A <boolean> parameter this turns automatic resynchronization off or on. If ONCE is selected a
resynchronization is begun.

The *RST selection is ON.

:THReshold <numeric value>

This sets the threshold level of error ratio at which synchronization is deemed to be lost.
Valid values are in the range 0 to 1.

Note
I

!I

The valid values are le-01 tbru le-08 in decade steps.

The *RST selection is le-1.

:LOGGing ONCElcboolean>

This node controls the output of logging information to an external controller. The use of
these commands is permitted only when the error detector is set up to not be an HP-IB
Controller. These commands control when a line of text is generated and made available to be
read by the controller. An SRQ is asserted when a line of text is available.

The LOGGing ONCE command is equivalent to the front-panel Log On Demand key.

The LOGGing <boolean> command enables and disables the logging capability.

The *RST selection is OFF.

:SQUelch <boolean>

This command controls the logging squelch command. When enabled, further output of
logged text is inhibited if triggered for ten consecutive seconds.

The *RST selection is OFF.

System Command Reference Section 4-37

Error Detector Commands
SENSel

:ALARms <boolean>

This command controls the output of alarm conditions.

The *RST selection is OFF.

:THReshold <numeric parm>

This command permits a threshold to be set against which logging conditions are compared to
decide when some logged information is output.

The *RST selection is l.OOe-3.

:DURing[:EVENt] NEVerlESECondIERGThrshld

This command selects which of three conditions apply when deciding when to log output
during a gating period. The choices are between ‘never ‘, ‘on the occurrence of an error
second’ and ‘when the error ratio over a second is greater than the threshold ’ .

The *RST selection is ESECond.

:END[:EVENt]NEVerl ALWayslNZECountlTERGthrshld

This command selects which of four conditions apply when deciding when to log output at the
end of a gating period. The choices are between ‘never’, ‘always’, ‘only on non-zero error
count ’ and ‘total error ratio greater than the threshold ’ .

The *RST selection is ALWays.

:END:REPort FULLIUREP. This command selects what to output at the end of a gating period.
The choices are between ‘FULL’ that is, Main R.esults plus Interval Results plus G-821
Analysis, and ‘UREP’, that is results currently part of the User’s Page.

The *RST selection is FULL.

:EYE

This node controls the automatic data/clock delay and automatic zero-one-threshold setting.

:TCENterl:TCENtre ONCE/<boolean>

The command :TCENter I :TCENtre ONCE causes the initiation of a search for the value of
data/clock delay that puts the active edge in the center of the data eye, defined as between
two points with a BER greater than EYE:THReshold. The command :TCENter I :TCENtre
ON has the same effect. If successful, the command leaves the data/clock delay at this value
and the center of the eye can be found by querying the data de1a.y value. If unsuccessful, the
EYE:WIDth? will return NAN (Not-A-Number). The command :TCENter I :TCENtre OFF
aborts a previously started search.

4-38 System Command Reference Section

Error Detector Commands
SENSel

Note
I

e

The clock/data align feature (used to center the sampling point in the data
input eye) uses information derived from the input clock frequency.

For the clock/data align feature to work properly the input frequency must
be stable during the measurement. The frequencies at the start and end
of the measurement are compared and if they differ by more than 10% the
measurement fails.

When a source clocking the instrument changes frequency it will take time
for the new frequency to settle and an additional 1 second for the frequency
measurement of the error detector module to settle. If a clock/data align is
performed before the frequency has settled it may fail.

To overcome this potential problem, ensure the frequency is stable before
starting a clock/data. align, either by waiting a set amount of time or by
querying the measured frequency until it is stable.

The command :TCENter 1 :TCENtre is an overlapped command.

:ACENterl:ACENtre ONCE/<boolean>

The command :ACENter I : ACENtre ONCE causes the initiation of a search for the value of
data amplitude that puts the zero-to-one threshold at the midpoint between the upper
and lower bounds of amplitude at which the bit error ratio exceeds the value setup by the
: EYE : THReshold command. The command : ACENter I : ACENtre ON has the same effect. If
successful, the command leaves the zero-one-threshold at this value and the center of the eye
can be found by querying the zero-one-threshold value. If unsuccessful, the EYE:HEIGht? will
return NAN (Not-A-Number). The command :ACENter I :ACENtre OFF aborts a previously
started search.

The command : ACENter I : ACENtre is an overlapped command.

:WIDTh? < NR3>

This command interrogates the eye width found by the most recent search for the value of
data/clock delay that put the active edge in the center of the data eye.

If the result is not available or the search was unsuccessful, then the number 9.91xE+37
(Not-A-Number, NAN) will be returned.

:HEIGht? <NR3>

This command interrogates the eye height found by the most recent search for the value of
data amplitude that puts the zero-to-one threshold level midway between the upper and lower
bounds at which the error ratio exceeds the threshold value set up by the :EYE:THReshold
command.

If the result is not available or the search was unsuccessful, then the number 9.91eE+37
(Not-A-Number, NAN) will be returned.

:THReshold <numeric value>

This command sets the threshold to be used in the determination of the edges of the eye.

The *RST selection is l.OOe-3.

System Command Reference Section 4-39

Error Detector Commands
SENSe2

SENSe2 - The Clock Sense
This node is to setup the clock input.

I ----------- /

: SENSe2 k---j
._ _.________’

.vO~Tage +-j .EDGE H:;TE!

Figure 4-11. SENSe2 Syntax Diagram

:VOLTage

This node is for setting electrical values of the clock input.

:EDGE POSitivelNEGative

Sets the active edge of the clock, that is, the one which will cause the input data to be
sampled.

The *RST selection is Positive.

4-40 System Command Reference Section

Error Detector Commands
INPutl

INPutl - The Data Input

!A:TERMmatlon

Figure 4-12. INPutl Syntax Diagram

This node is for setting electrical characteristics of the data input.

:POLarity NORMall INVerted

Sets the polarity of the detected data signal.

The *RST selection is NORMal.

:DELay <numeric value>

Sets the de1a.y of the sampling of the data input relative to the active clock edge. The units
are in seconds. The va.lue is rounded to the nearest one picosecond.

The *RST selection is 0 ps.

:TERMination <numeric value>

This node permits the input termina.tion level to be set to 0 volts (ground) or -2 volts.

If input termination and zero-to-one threshold level are to be set up, then the input
termination should be set up first.

The *RST selection is 0 V.

INPut - The Clock Input

INPut
: TERMinat ion Qnuneric value>
: TERMinat ion? <NRl>

This node is for setting electrical characteristics of the clock input.

:TERMination <numeric value>

This node permits the input termination level to be set to 0 volts (ground) or -2 volts.

If input termination and zero-to-one threshold level are to be set up, then the input
termination should be set up first.

The *RST selection is 0 V.

System Command Reference Section 4-41

Error Detector Commands
FETCh

Measurement Functions
The FETCh I PFETch command is used to return measurement values from the error detector.
The FETCh command returns the results for the current gating period, and the PFETch
(Previous FETch) returns the results for the previous gating period. The PFETch command is
valid only in Repetitive Timed gating periods.

If any result is not available, then the number 9.91xE+37 (Not-A-Number, NAN) will be
returned.

All results are updated every 0.2 seconds, except for the two DELTa? commands which are
updated every 0.1 seconds.

T
_’-----Ii iSENSe -

---2

-kT]-+ :ELAPsed? +-- ,

> - returns - NR3 response

:FREOwncy?

Figure 4-13. FETCh Syntax Diagram

4-42 System Command Reference Section

Error Detector Commands
FETCh

[SENSe[l]]

This node (the defa.ult node) is for measurements on the data input.

:ECOunt

This is a contraction of the phrase Error COUnt and returns the number of errors counted in a
time specified by the next level in the command. The next level is:

1: ALL] [: TOTal] 7 <NR3>

[: ALL] : DELTa? <NR3>

: ZASone [:TOTal] ? <NR3>

: OASZero [:TOTal] ? <NR3>

The total number of errors accumulated since the start of the
gn ting period.
The number of errors accumulated in the last decisecond.
This is intended to give a result that corresponds to the
“instantaneousn error count. This value is available even when
gating is turned off.
This is a contraction of the phrase Zero received AS One. The
command returns the number of errors accumulated since the
start of the gating period, where each error is a true data zero
received as a data one.
This is a.contraction of the phrase One received AS Zero. The
command returns the number of errors accumulated since the
start of the gating period, where each error is a true data one
received as a. data zero.

:ERATio

This is a contraction of the phrase “Error RATio” and is the ratio of the number of errors to
the number of bits received in a time interval, specified by the next level in the command.
The next level is:

[: TOTal] ? <NR3> The error ratio calculated from the total counts accumulated
since the start of the gating pen’od.
The “instantaneous” error ratio calculated from the counts
obtained in the last decisecond. This value is available even
when gating is turned ofl.
This is a contraction of the phrase Zero received AS One.
The command returns the error mtio calculated from a count
of errors, where each error is a true data zero received as a
data one.
This is a contraction of the phrase One received AS Zero.
The command returns error ratio calculated from a count of
errors, where each error is a true data one received as a data
zero.

:DELTa? <NR3>

: ZASone [: TOTal] ? <NR3>

:OASZero[:TOTal]? <NR3>

:EINTerval

This is a contraction of the phrase Errored INTerval and returns a count of the number of
time intervals, the dura.tion of which is selected by the next node, in which one or more errors
were detected. The four time interval classifications are:

:SEConds? <NR3> One second
:DSEConds? <NR3> One decisecond
:CSEConds? <NR3> One centisecond
:MSEConds? <NR3> One millisecond

System Command Reference Section 4-43

Error Detector Commands
FETCh

:EFINterval

This is a contraction of Error Free INterval and returns a count of the number of time
intervals, the duration of which is selected by the next node, in which no error was detected.
The four time interval classifications are:

:SEConds? <NR3> One second
:DSEConds? <NR3> One decisecond
:CSEConds? <NR3> One centisecond
:MSEConds? <NR3> One millisecond

:LOSS

This node returns a count of the number of seconds for which some characteristic was lost.

:POWer? <NR3>. This is the count of the number of seconds for which power was lost, since
the start of the gating period.

If the Error Detector is not connected to an HP70004A Display, then this measurement is not
available. If received, then it will return 9.91xE+37 (Not-A-Number, NAN).

:SYNChronisat? <NR3>. This is the count of the number of seconds for which the incoming
pattern was not synchronized to the reference pattern, during the gating period.

:G821

This node returns a. percentage of seconds tha.t have been classified according to the CCITT’s
G.821 specification ‘. The subordinate nodes, representing the classifications, a.re:

: AVAilability? <NR3> % Availability
:UNAVailabili? <NR3> % Unavailability
:SESeconds? <NR3> % Severely Errored Seconds
:DMINutes? <NR3> % Degraded MINutes
:ESEConds? <NR3> % Errored SEConds

:GATE

This node is used to return information a.bout the gating period.

:ELAPsed? <NR3>. This node returns information about the degree to which the gating
period has progressed. If GATE:MANNer TIME is selected, then this command returns the
elapsed time into the ga.ting period in units of seconds. If GATE:MANNer ERRors is selected,
then this command returns the elapsed errors into the gating period. IF GATE:MANNer
BITS is selected, then this comma.nd returns the elapsed clock bits into the gating period.

:LTEXt?

This command returns one line of log output. If a. line of text is not currently a.vaila.ble, then
the message No text currently available is returned.

4-44 System Command Reference Section

Error Detector Commands
FETCh

SENSe2

This node is for measurements on the clock input.

:FREQuency? <NR3>

This returns the current frequency of the signal on the clock input. This measurement is
independent of the gating period.

System Command Reference Section 4-45

Error Detector Commands
DlSPlay

DlSPlay
This subsystem defines the usage of the display.

The available commands are:

:SHOW PGENerator

EDETector

‘--j :PAGE USER

ISTatus

MSTatus

LSTatus

MRESults

Figure 4-14. DlSPlay Syntax Diagram

:SHOW PGENerator(EDETectorlBOTH

This command controls the allocation of the display window. If the error detector has been
allocated a window that is less than a full screen in size, then that window is allocated to
either the pattern generator or error detector as a.ppropriate. If the DISPlay :SHOW BOTH
command is received then an error is generated. If the error detector has been allocated a
window that is the full size of the screen, then that window is allocated to either the pattern
generator or error detector as appropriate, and the DISPlay :SHOW BOTH command causes the
window to be shared, with the error detector getting the upper half.

If the error detector does not have a slave pattern generator, then the receipt of the command
: DISPlay : SHOW causes an error.

The *RST selection is:

full window - BOTH
half window - EDETector

4-46 System Command Reference Section

Error Detector Commands
DlSPlay

:PAGE USER~lSTatus~MSTatus~LSTatus~MRESults~lRESults~G82l~ZOOZ results

This command selects the display page to be viewed. The choices are:

USER
ISTatus
MSTatus
LSTatus
MRESults
IRESults
G821
ZCIOZ results

USER-configurable page.
Input STatus page.
Main STatus page.
Logging STatus page.
Main RESults page.
Interval RESults page.
CCITT’s G.821 analysis page.
Zeros as one, one as zeros results

The *RST selection is MRES.

:REPort PREViousjCURRent

This subsystem configures the result displays to show answers relating to either the previous
gating period or current gating period. It has no effect on the results returned following the
FETCh or PFETch commands.

The *RST selection is PREV.

:UPAGe[:DEFine] <parameter>

This subsystem configures the user-defined page to hold particular results or status
information. As each command is received, the chosen parameter is added to the next vacant
location in the User’s Page.

Note that a. separate User’s Page exists for full and half sized display windows.

The single parameter is chosen from the following:

BECount
BEDCount
BERatio
BEDRatio
BGELapsed
OEcount
ZECount
OERatio
DTIMe
ECOunt
DCOunt
ERATio
DRATio
PIDentity
CFRequency
ERSeconds
EDSeconds
ECSeconds
EMSeconds
PLSeconds
SLSeconds

big error count
big error delta count
big error ratio
big delta error ratio
big gating elapsed
one-as-zero count
zero-as-one count
zero-as-one mtio
date - time
error count
delta count
error ratio
delta error ratio
pattern identity
clock frequency
error seconds
error deciseconds
error centiseconds
error milliseconds
power-loss seconds
sync-loss seconds

System Command Reference Section 4-47

Error Detector Commands
DlSPlay

EFSeconds
EFDSeconds
EFCSeconds
EFMSeconds
BLANk
AVAilability
UNAVailabili
SESeconds
ERDSeconds
DMINutes
SMODe
ZOTMode
DTERmination
TERMination
DIDelay
CEDGe
GMDDe
GREPort
GPERiod
GELapsed
PLSeconds
SLSeconds
LGSTatus
ALOGging
LDTRigger
LETRigger
LEReport
LTHReshold
SSTatus
HCONtroller
EETHreshold
EWIDth
EHEight

error-free seconds
error-free de&seconds
error-free centisewnds
error-free milliseconds
blank line
G.821 availability
G.821 unavailability
G.821 severely errored seconds
G. 821 errored seconds
G.821 degraded minutes
synchronization mode
zero-to-one mode
data termination (for backwards compatibility)
clock and data termination DPOLarity << data polarity
data input delay
clock edge
gating mode
gating report
gating period
gating elapsed
power-loss seconds
sync-loss seconds
logging status
alarms logging
log during-trigger
log end-trigger
log end-report
logging threshold
squelch status
HP-IB controller
eye edge threshold
eye width
eye height

The *RST selection is given by the table below:

The default values of the User’s Display Page when allocated half a screen are:

INSTR PRESET PRESET 1 & PRESET 2
Line 1: pattern, line #l B I G error delta count
Line 2: pattern, line #2 B I G error delta count
Line 3: error count B I G error delta count
Line 4: error ratio B I G error delta count
Line 5: gating mode error count
Line 6: gating period O/l threshold mode
Line 7: O/l threshold mode data input delay
Line 8: data input delay gating elapsed

The default values of the User’s Display Page when allocated a whole screen are:

4-48 System Command Reference Section

INSTR PRESET
Line 1: pattern, line #l
Line 2: pattern, line #2
Line 3: error count
Line 4: delta error count
Line 5: error ratio
Line G: error seconds
Line 7: error free seconds
Line 8: clock frequency
Line 9:
Line 10: sync mode
Line 11: sync loss seconds
Line 12: gating mode
Line 13: gating period
Line 14: gating elapsed
Line 15:
Line 16: O/l threshold mode

Error Detector Commands
DlSPlay

PRESET 1 & PRESET 2
B I G error delta count
B I G error delta count
B I G error delta count
B I G error delta count
B I G error count
B I G error count
B I G error count
B I G error count

O/l threshold mode
data input delay
eye width
clock frequency

gating elapsed
Line 17: clock & data termination
Line 18: data polarity error seconds
Line 19: dat,a input, delay error milliseconds
Line 20: clock edge sync loss seconds

The query form of the command returns a <boolean> to indicate whether a particular item is
currently contained within the User’s Page.

:UPAGe:CLEar

Clears the contents of the user-defined page.

System Command Reference Section 4-49

Error Detector Commands
SYSTem

SYSTem
This subsystem is mostly defined by SCPI for functions that are not related to instrument
performance.

’ ERRor?

r’ : K L O C k

number

space

,
DATE ye*, day

hour second

L/ :FREVwm i---i:MPRocessor?
-\

space j
i

Figure 4-15. SYSTem Syntax Diagram

:BEEPer

This subsystem controls the audible beeper.

The :BEEPer command produces a beep only if a Display unit is connected and the error
detector has been assigned a window.

[:lMMediate] [<freq>[,<time>[,<vol>]]]

Causes an audible tone to be generated. The optional parameters <freq>, <time> and <vol>
are intended (in SCPI) to set the frequency, durakion and volume of the beep; however, they
are not implemented. A fixed beep is always generated.

The error detector accepts these parameters, but ignores them.

There is no query form of this command.

:STATe <boolean>

Controls whether the error detector beeps when an error is detected. (In this context “error”
means a erroneous data bit on the data input not an internal instrument error nor an HP-IB
message error.)

The *RST selection is OFF.

4-50 System Command Reference Section

Error Detector Commands
SYSTem

:ERRor?

This query-only command will pull the next error from the error queue, and return the error
number and a string describing the error. The error queue is of depth ten.

Note
I

lb

SCPI-defined errors are all negative. The positive error numbers are available
to be defined. The SCPI Messages section at the rear of this manual contains
a list of error numbers.

:KLOCk <boolean>

This locks the instrument’s keyboard. When locked, the user may not modify any of the
instrument’s configuration; although those keys that merely affect the display are still usable.

The *RST selection is OFF.

:PRESetl:PRESet<n>

Sets the error detector to a pre-defined “local operation” state. The choice of <n> is 0
through 2. PRESet and PRESetO both have the same effect as the front-panel (INSTR PRESET)

key. PRESetl and PRESet2 have the same effect as the front-panel recall setup PRESET 1

and PRESET 2 keys respectively.

This command causes all past results to be labelled as invalid.

Note If PRESet2 is selected whilst an external controller is connected, then an error
message is given because the instrument is attempting to take over HP-IB
whilst it is already under control of the controller.

:PTHRough

The Pass-Through command allows a remote programming command to be passed through
an MMS master module to a slave module. All valid remote commands for the slave can
be passed through in this way. The command intended for the slave is given as a string
parameter to the “PTHRough” command. The master pays no attention to the contents of
this parameter.

Note
Ic

e

The Pass-Through command would not be used to access the floppy disc of a
slaved pattern generator whilst the error detector is gating.

System Command Reference Section 4-51

Error Detector Commands
SYSTem

[:STRing] <string>

The <string> parameter is passed through in its entirety to an MMS slave. The format of
the parameter must be identical to the HP-IB command that would have been given to the
slave had it been setup as an independent master. If the slave module detects an error in the
<string> parameter passed through to it, it will generate an error in its error queue and set
bit 1 of the master’s Status Byte.

If no slave is present when the pass-through command is received, the error slave needs service
is generated.

Example:

To set the frequency of an HP 70312A clock source (slaved to a master pattern generator,
which is itself slaved to a master error detector) to 2.5 GHz, the following command could be
issued:

OUTPUT clock ; "SYST:PTHR ""SYST:PTHR """"FREQ 2.5 GHZ"""""""

Note
I

w

The string parameter itself needs to be enclosed within quotation marks.
Since the whole output string is already enclosed within double quotation
marks, then the inner-most set must be represented by a quadruple set.
Alternatively, a single set of single quotation marks may be used:

OUTPUT clock ; "SYST:PTHR ""SYST:PTHR 'FREQ 2.5 GHZ"""'

[:STRing]? <string>?

This command permits a query command to be passed through to the slave. Note that a
question mark is needed to terminate the header; and another to terminate the <string> since
the string is itself a header when received by the slave.

If no slave is present when the pass-through query command is received, an error is generated
and a null string is returned.

Example:

To query the current frequency setting of a slaved HP 70312A clock source, the following
commands could be used:

OUTPUT pgen ; "SYST:PTHR? 'FREQ?"'
ENTER pgen ; freq

Note
I

w

If the string parameter sent to the slave contains an error one of the following
can occur:

1 The slave will generate an error in its error queue and set bit 1 of the
master’s status byte.

D For Query commands only: the instrument can hang-up; no error message is
reported. The instrument must be powered down, then powered up, and the
string parameter checked/corrected.

4-52 System Command Reference Section

Error Detector Commands
SYSTem

:DATE <year>,<month>,<day>

This command permits the date of the real-time clock within the error detector to be set up.
The command is invalid if another MMS module, with an HP-MSIB address to the left of and
on the same row or lower than the error detector, exists and supports a valid date.

The range of valid <year> is 1990 through 2049.

:TIME <hour>,<minute>,<second>

This command permits the time of the real-time clock within the error detector to be set up.
The command is invalid if another MMS module, with an HP-MSIB address to the left of and
on the same row or lower than the error detector, exists and supports a valid time.

:FREVision:MPRocessor?<string>

This command permits the revision code of the measurement processor to be interrogated.

System Command Reference Section 4-53

Error Detector Commands
STATUS

STATUS

The status conditions that the error detector needs to report are partly covered by the
pre-defined status registers of IEEE 46’8.2 and SCPI.

Two additional status registers covers instrument hardware failure conditions and MSIB
slaves.

:FAILure
[:EVENt]? <NRl>

:SSERvice
[:EVENt]? <NRl>
:ENABle <NRf>
:ENABle? GIRl>

Status Byte

If an MMS slave module detects a.n error that would have caused an SR.Q to be generated
when operating as an independent master, then bit 1 of the Status Byte of the master MMS
module is set. This bit is called slnve service. In this way, the master module can relay the
error situation to the external controller. The controller can then serial poll the master, detect
that it is the slave module tha.t has an error, and interrogate the slave’s Status Byte and error
queue.

4-54 System Command Reference Section

Error Detector Commands
STATU S

:OPERation

bits.

The bits in this register permit
All bits are CONDITION bits,

the operational status of the error detector to be interrogated.
except for BIT ER.ROR and END PERIOD which are EVENT

The usage by the error detector is as follows:

SCPI MEANING error detector usage

0 - CALibrating

1 - SETTling

2 - R,LZNGing

3 - SWEeping

4 - MEASuring The instrument is actively gating.

5 - Waiting for TRIG

6 - Waiting for ARM

7 - CORRecting

8 - Bit ERRor -4 da.ta bit-error has occurred.

9 - End PERiod -4 timed, repetitive gating-period has ended.

10 - Logged TEXt A line of logged test is available to be read. A negative
transition occurs after every line of text.

11 - Clock-Data ALign The clock-to-data align search is in process.

12 - O/l THR center The zero-to-one threshold center search is in process.

13 - Reserved for SCPI definition -

14 - PROGram running

15 - Zero

:QUEStionable

The bits in this register indicate that a signal is of questionable quality. The usage by the
Error Detector is as follows:

SCPI MEANING

0 - VOLTage

1 - CXJRRent

2 - TIME

3 - POWer

4 - TEMPerature

5 - FREQuency

6 - PHASe

7 - MODulation

Error Detector usage

Data loss.

System Command Reference Section 4-55

Error Detector Commands
STATU S

8 - CALibration

9 - Instr dependent

10 - Instr dependent

11 - Instr dependent

12 - Instr dependent

13 - Instr summary

14 - Unexpected param

15 - Zero

Clock loss.

sync loss.

The signal is Unavailable according to the CCITT G.821
definition.

-Re-synchronization is in progress on the first pass of all
possible pa.ttern alignments.

:PRESet

The PRESet command is au event that configures the SCPI and device dependent status data
structures, such that the device dependent events are reported at a higher level through the
mandatory part of the status reporting structures.

The PRESet command a.ffects only the ena.ble register and the transition filter registers for the
SCPI mandated and device dependent sta.tus da.ta. structures. PRESet does not affect either
the “status byte” or the “standard event status” as defined by IEEE 488.2. PRESet does not
clear any of the event registers. The *CLS command is used to clear all event registers in the
device status reporting mechanism.

For the device dependent status data structures, the PRESet command sets the enable register
to all one’s and the transition filter to recognize both positive and negative transitions. For
the SCPI mandatory status data structures, the PRESet command sets the transition filter
registers to recognize only positive transitions and sets the enable register to zero.

:FAILure

The bit.s in this register indicate that a ma.jor ha.rdwa,re element of the instrument has failed.
No capability is provided to query the condition register, setup the enable register, nor setup
the positive or negative transition filters. This is because failures within this category are
non-recoverable, and as such the enable registers are pre-defined.

The usage by the error detector is as follows:

BIT error detector usage

0 ROM failure

1 RAM failure

2 Non-volatile memory corrupt

3 Gate Arra.y failure

4 PIT fa.ilure

5 Interfa.ce board #l failure

6 Measurement processor board fa,ilure

7 MSIB failure

4-56 System Command Reference Section

s EEPROM failure

9 Undefined

10 Undefined

1 1 Undefined

12 Undefined

13 Undefined

14 Undefined

15 Undefined

Error Detector Commands
STATUS

:SSERvice

The bits in this register indicate that am MSIB slave module is requesting service. No
capability is provided to query the condition register nor setup the positive or negative
transition filters. This is because failures within this category are events.

The usage by the Pattern Generator is as follows:

B I T pattern generator usage

0 Sla.ved clock source or signal generator

1 thru 15 Undefined

System Command Reference Section 4-57

Error Detector Commands
STATUS

IEEE Mandatory Commands
The following IEEE 488.2 mandatory commands are implemented:

*CL!3 Clear Status Command.

‘ESE Standard Event Status Enable Command.

‘ESE? Standard Event Status Enable Query.

‘ESR? Standard Event Status Register Query.

‘IDN? Identification Query.

*opt Opera.tion Complete Command.

*oPc? Operation Complete Query.

“RST Reset Command.

*SRE Service Request Ena.ble Command.

*SRE? Service Request Enable Query.

*STB? Read Status Byte Query.

*TST? Self-Test Query.

*WA1 Wait-to-Continue Command.

IEEE Optional Commands

The following optional commands are implemented:

*OPT? Option Identification Query.

fPSC Power On Status Clear Command.

*Psc? Power On Status Clear Query.

*RCL Recall device setup.

*SAV Save device setup.

4-58 System Command Reference Section

IEEE Std 488.2-1987 System Related Specifications
Unless otherwise stated, the following specifications apply to both the Pattern Generator and
Error Detector.

Device/Controller Synchronization Techniques

Overlapped and Sequential Commands

All commands are sequential commands, except for the following:

GATe [: STATe] ON for SINGLE TIMED repetitive periods in the Error Detector.

EYE:TCENterlEYE:TCENtre ONCEION

EYE:ACENterIEYE:ACENtre ONCEION

Operation Complete Messages

The following functional criteria are met when an operation complete message is generated:

A SINGLE TIMED gating period has espired.

The automatic eye time-centering operation has expired.

The automatic eye amplitude-cent,ering operation has expired.

System Command Reference Section 4-59

References

3. HP 70000 MMS Communication Protocol Design Guide (1988-11) - explains the addressing
of MMS modules and the communications links between them.

4. ANSI/IEEE Std 488.1-1987 - IEEE Standard Digital Interface for Programmable
Instrumentation - defines the electrical behavior of the HP-IB interface.

5. ANSI/IEEE Std 488.2-1987 - IEEE Standard Codes, Formats, Protocols, and Common
Commands for use with ANSI/IEEE Std &SS.l-19S7 - defines the allowable syntax of the
messages that may be sent over the HP-IB interface.

6. Standard Commands for Progmmmable Instruments, SCPI, Syntax and Style - Revision 1.0
- describes the underlying concepts and style guidelines of SCPI.

7. Standard Commands for Programmable Instruments, SCPI Manual - Version 1990.0 -
defines the grammar and voca.bulary of SCPI commands.

8. CCITT (3.821 (Red Book) - Error Performance of an International Digital Connection
forming part of an Integrated Services Digital Network

9. CCITT 0.1.51 - Specification for Instrumentation to hleasure Error Performance on Digital
Systems

4-60 System Command Reference Section

5
Program Examples

This chapter provides example programs which perform the following functions:

w Log a summary of results to a disc file on completion of a measurement.

n Give a basic demonstration of the Error Performance Analyzer’s measurement capability.

n Check command synta.s.

n Identify the configuration of the system connected to the HP-IB.

n How to recover the user pattern data in Block format. Also to retransmit the block data
and if necessary display or print the entire pattern.

Program Examples 5-l

! Program name LOGGER-110
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

! This program logs the summary of results to a string on completion
! of a measurement.

! Run the program before setting the instrument to measure. The program
! will prompt the user when it is time to configure the instrument.

CALL Clr-crt ! Clear screen.
Error_det=717 ! Assign variable name.
COM Error_det,Text$[80]
COH /Log-files/ Files$(200)[80]
A=SPOLL(Error-det) ! Clear out any existing SRQ
OUTPUT Error-det;"*CLS" ! Clear instrument.
ON INTR 7 CALL Read-data ! Identify branch routine.
ENABLE INTR 7;2 ! Enable computer.
CALL Config-reg ! Call register configure routine.
CALL Clear-buffer ! Call instrument buffer clear routine.
CALL Config-instr ! Call user configure routine.

200 Wait-loop: ! ! This loop simply waits for the SRQ.
210 DISP "Waiting for end of measurement"
220 GOT0 Wait-loop
230 END
240 SUB Config-reg ! This routine sets the instr'kaent to
250 CALL Clr-crt ! generate an SRQ at the end of gating.
260 COM /Log-files/ File$(*)
270 COM Error-det,Text$
280 OUTPUT Error-det;"STATUS:OPERATION:EVENT?"! Always clear Event register.
290 ENTER Error-det;Event-reg
300 OUTPUT Error~det;"STATUS:OPERATION:PTRANSITION 0"
310 OUTPUT Error~det;"STATUS:OPERATION:PTRANSITION 512" ! Pass pos bit 9.
320 OUTPUT Error~det;"STATUS:OPERATION:NTRANSITION 16" ! Pass neg bit 4.
330 OUTPUT Error-det;"STATUS:OPERATION:ENABLE 528" ! Enable bits 4 B 9.
340 OUTPUT Error-det;"*SRE 128" ! Enable SRE on bit 7.
350 SUBEND
360 SUB Clear-buffer ! This routine clears out any left over data from a
370 ! previous measurement.
380 COM Error-det,Text$
390 DISP "Clearing Buffer"
400 WAIT 1
410 REPEAT
420 OUTPUT Error-det;"FETCH:LTEXT?" ! Fetch a line of text.
430 ENTER Error-det;Text$
440 ! PRINT Text$
450 UNTIL Text$="No text currently available" ! End of results message.
460 DISP
470 SUBEND
480 SUB Conf ig-instr ! This routine simply prompts the user to set the
490 ! instrument manually. The routine could be substituted
500 ! by a much more sophisticated one.
510 COM /Log-files/ File$(*)
520 BEEP 600,.5
530 LOCAL 717
540 PRINT "Instrument returned to LOCAL mode"
550 PRINT

5-2 Program Examples

560 PRINT "Please set up measurement manually, set a 5 or 10 set gating period,"
570 PRINT "set the logging on and press RUN GATING to start the measurement."
580 PRINT "and then hit the RETURN/ENTER key to continue the program"
590 Get-key: !
600 INPUT Key$
610 IF Key$<>"" THEN Get-key
620 CALL Clr-crt
630 ENABLE INTR 7;2
640 SUBEND
650 SUB Read-data ! This routine gets the results from the Error Detector.
660 CALL Clr-crt
670 COM /Log-files/ File$(*)
680 COM Error-det,Text$
690 A=SPOLL(717)
700 DISP "Storing text"
710 REPEAT ! This loop fetches all the available lines of text.
720 OUTPUT Error-det;"FETCH:LTEXT?"
730 ENTER Error-det;Text$
740 File$(Pointer)=Text$
750 Pointer=Pointer+l
760 WAIT .1
770 DISP "Storing text line",Pointer
780 IF Pointer>200 THEN ! Maximum allowable length is 200 lines.
790 DISP "FILE FULL"
800 BEEP 400,l
810 SUBEXIT
820 END IF
830 UNTIL Text$="No text currently available"
840 FOR Lines=1 TO Pointer-2 ! Miss out last part of results message.
850 PRINT File$(Lines)
860 NEXT Lines
870 OUTPUT Error-det;"STATUS:OPERATION:EVENT?"
880 ENTER Error-det;Event-reg
890 CALL Config-instr
900 SUBEND
910 SUB Clr-crt
920 OUTPUT 2 USING "#,K";CHR$(255)&"K"
930 SUBEND

Program Examples 5-3

10 ! Program name REMOTE-PNL
20 !
30 ! This program gives a basic demonatration of the Error Performance
40 ! Analyzer's measurement capability. It allows control of the basic
50 ! generator/detector/clock parameters, the type of measurement gating
60 ! and it returns all the basic results.
70 !
80 ! It may be used as a stand alone program or the routines may be
90 ! expanded to produce a more sophisticated program.
100 !
110 CALL Clr-crt ! Call clear screen routine.
120 Pattern_gen=718 ! Assign addresses to variables.
130 Error_det=717
140 COM Pattern-gen.Error-det ! Assign variables to common memory area.

150 CALL Default
160 CALL Clr-crt
170 REPEAT
180 CALL Main-menu
190 UNTIL Infinity
200 END
210 SUB Default

! Call instrument default settings.

! Set repeat loop around main menu.

220 ! This subroutine sets the modules to their default settings.
230 CALL Clr-crt
240 DISP "Initialising System"
250 COH Pattern-gen.Error-det
260 CALL Clear-instr(Pattern-gen)
270 CALL Clear-instr(Error-det)
280 OUTPUT Pattern-gen;"SYSTEM:PTHROUGH '*CLS;*SRE O;*ESE O;*RST"'
290 WAIT 3
300 SUBEND
310 SUB Main-menu
320 ! The program revolves round this sub. It displays the options available.

330 CALL Clr-crt
340 COM Pattern-gen.Error-det ! Get variables from memory.
350 PRINT TABXY(35,l>,"OPTIONS" ! TABXY prints at x,y coordinate.

360 PRINT TABXY(l,S)
370 PRINT "1 - Summary of results"
380 PRINT "2 - Display/alter setup - Pattern Generator"
390 PRINT "3 - Display/alter setup - Signal Generator"
400 PRINT "4 - Display/alter setup - Error Detector"
410 PRINT "5 - Measurement setup"
420 Make-selection: !
430 PRINT TABXY(1,30);"Selection"
440 INPUT Choice
450 IF Choice<1 OR Choice>5 THEN Make-selection ! Check selection is OK.

460 SELECT Choice
470 CASE 1
480 CALL Result-sum ! Call results summary routine.

490 CASE 2
500 CALL Pgen-setup ! Alter Pattern Generator setup.

510 CASE 3

5-4 Program Examples

520 ! CALL Sgen-setup ! Alter Signal Generator setup.

530 PRINT "NOT AVAILABLE WITH HP 70311A AND HP 703128 CLOCK SOURCES II
540 PRINT "EDIT THIS PROGRAM TO USE SUB FOR HP 70322 AND HP 70320
SYNTHESIZERS"
550 PRINT "PRESS RETURN TO GO BACK TO MAIN MENU"
560 INPUT Anthing
570 CASE 4
580 CALL Edet-setup ! Alter Error Detector setup.
590 CASE 5
600 CALL Meas-setup ! Alter measurement setup.
610 END SELECT
620 SUBEND
630 SUB Result-sum
640 ! This subroutine display all the possible results.
650 CALL Clr-crt
660 C O M Pattern-gen,Error-det
670 OUTPUT Error-det;"FETCH:ECOUNT?"
680 ENTER Error-det;Error-count
690 OUTPUT Error-det;"FETCH:ERATIO?"
700 ENTER Error-det;Error-ratio
710 OUTPUT Error-det;"FETCH:EINTERVAL:SECONDS?"
720 ENTER Error-det;Error-sets
730 OUTPUT Error-det;"FETCH:EFINTERVAL:SECONDS?"
740 ENTER Error-det;Error-free-sets
750 OUTPUT Error_det;"FETCH:G82l:AVAILABILITY?"
760 ENTER Error-det;Availablity
770 OUTPUT Error_det;"FETCH:G821:UNAVAILABILI?"
780 ENTER Error-det;Unavailabilty
790 OUTPUT Error_det;"FETCH:G82l:SECONDS?"
800 ENTER Error-det;Sev-err-sets
810 PRINT TABXY(30,1),"SUHMARY OF RESULTS"
820 PRINT TABXY(1,5),"Error Count =";Error-count
830 PRINT "Error Ratio =";Error-ratio
840 PRINT "Errored Sets =II ;Error-sets
850 PRINT "Error Free Sets =";Error-free-sets
860 PRINT
870 PRINT "Availablity =";Availability
880 PRINT "Unavailability =";Unavailability
890 PRINT "Severely Errored Sets =";Sev-err-sets
900 PRINT TABXY(l,lB);"Enter number to change parameter or"
910 PRINT "Hit RETURN key for main menu"
920 INPUT Continue
930 SUBEND
940 SUB Pgen-setup ! This routine alters the Pattern Generator setup.
950 CALL Clr-crt
960 COM Pattern-gen,Error-det
970 PRINT "Pattern Generator"
980 PRINT *@-----------------Be
990 PRINT
1000 PRINT "The current configuration is as follows:-"
1010 PRINT
1020 OUTPUT Pattern-gen;"PATTERN?"
1030 ENTER Pattern-gen;Pgen-pattern$
1040 OUTPUT Pattern-gen;"PATTERN:EADDITION?"

Program Examples 5-5

1050 ENTER Pattern-gen;Error-add
1060 OUTPUT Pattern-gen;"VOLTAGE?"
1070 ENTER Pattern-gen;Data-amp
1080 PRINT "I - Pattern is ";Pgen-pattern$
1090 PRINT "2 - Error Add is ";Error-add
1100 PRINT "3 - Data O/P Amplitude is ";Data-amp;"V"
1110 PRINT TABXY(l,lS);"Enter number to change parameter or"
1120 PRINT "hit RETURN key for main menu."
1130 INPUT Key$
1140 SELECT Key$
1150 CASE "1"
1160 INPUT "PRBS Length",Prbs-length$
1170 PrbsJength$="PAlTERN PRBS"&Prbs-length$
1180 OUTPUT Pattern-gen;Prbs-length$
1190 Error-add: !
1200 CASE "2"
1210 INPUT "Error Add enabled ? Y or N",Choice$
1220 IF Choice$="Y" THEN OUTPUT Pattern-gen;"PATTERN:EADDITION I"
1230 IF Choice$="N" THEN OUTPUT Pattern-gen;"PATTERN:EADDITION 0"
1240 IF Choice$<>"Y" OR Choice$<>"N" THEN Error-add
1250 Amplitude-set: !
1260 CASE "3"
1270 INPUT "Enter Data amplitude in volts",Data-amp
1280 OUTPUT Pattern-gen;"VOLTAGE";Data-amp
1290 END SELECT
1300 SUBEND
1310 SUB Sgen-setup ! This routine alters the stup of the Signal Generator.

1320 !
1330 ! ***~*******~****
1340 ! THIS ROUTINE IS FOR HP 703208 AND HP 703228 ONLY *
1350 ! **
1360 CALL Clr-crt
1370 DIH

Command$C50l,Reply$C501,Sig~gen~freq$C50l,Sig~gen~amp$~50~,Sig~gen~op$~501
1380 COU Pattern-gen.Error-det
1390 PRINT "Signal Generator"
1400 PRINT *I___- --- ---- ,--mm**
1410 PRINT
1420 PRINT "The current configuration is as follows:-"
1430 PRINT
1440 CALL Sig-gen("':FREQUENCY?"',Reply$)
1450 Sig-gen-freq$=Reply$
1460 CALL Sig-gen("':AMPLITUDE?'",Reply$)
1470 Sig-gen-amp$=Reply$
1480 CALL Sig-gen("' :AHPLITUDE:STATE?'".Reply$)
1490 Sig-gen-op$=Reply$
1500 PRINT "I - Frequency is ";Sig-gen-freq$;"Hz"
1510 PRINT "2 - Amplitude is ";Sig-gen-amp$;"dBm"
1520 PRINT "3 - Output is '1 ;Sig-gen-op$
1530 PRINT TABXY(l,lS);"Enter number to change paramter or"
1540 PRINT "hit RETURN key for main menu."
1550 INPUT Key$
1560 SELECT Key$
1570 CASE "I"

5-6 Program Examples

1580 INPUT "Enter fequency value and units i.e. lGHZ",Sig-gen-freq$
1590 Command$="'" &":FREQUENCY "%Sig-gen-freq$%"'"
1600 CALL Sig-gen(Command$)
1610 CASE "2"
1620 INPUT "Enter amplitude value and units i.e. +lDBM",Sig-gen-amp$
1630 Command$="'" %":AMPLITUDE "%Sig-geneamp$%"'"
1640 CALL Sig-gen(Command$)
1650 CASE "3"
1660 Command$=") :AMPLITUDE:STATE ON'"
1670 CALL Sig-gen(Command$)
1680 CALL Freq-stable
1690 END SELECT
1700 SUBEND
1710 SUB Edet-setup ! This routine alters the setup of the Error Detector.
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990

CALL Clr-crt
COM Pattern-gen,Error-det
PRINT "Error Detector"
PRINT II--------------W
PRINT
PRINT "The current configuration is as fol
PRINT
OUTPUT Error-det;"PATTERN?"
ENTER Error-det;Pgen-pattern$
OUTPUT Error-det;"SYNCHRONISAT?"
ENTER Error-det;Sync-state
IF Sync-state=1 THEN

Sync-state$="AUTO"
ELSE

Sync-state$="MANUAL"
END IF
OUTPUT Error-det;"VOLTAGE:ZOTHRESHOLD?"
ENTER Error-det;Data-threshold
PRINT "1 - Pattern is ";Pgen-pattern$
PRINT "2 - Sync State is ";Sync-state$
PRINT "3 - Data Threshold is ";Data-threshold;"V"
PRINT TABXY(l,lS);"Enter number to change parameter or"
PRINT "hit RETURN key for main menu."
INPUT Key$
SELECT Key$
CASE "1"

INPUT "PRBS Length",Prbs-length$
Prbs-length$="PATTERN PRBS"%Prbs-length$! Remove blank in string.

2000 OUTPUT Error-det;Prbs-length$

lows:-"

2010 Sync-mode: I
2020 CASE "2"
2030 INPUT "Auto Synchronization mode - Y or N",Sync-modes
2040 IF Sync-mode$="Y" THEN OUTPUT Error-det;"SYNCHRONISAT 1"
2050 IF Sync-mode$="N" THEN OUTPUT Error-det;"SYNCHRONISAT 0"
2060 IF Choice$<>"Y" OR Choice$<>"N" THEN Sync-mode
2070 Amplitude-set: !
2080 CASE "3"
2090 INPUT "Enter Data amplitude in volts (-5V to lV)",Data-threshold
2100 OUTPUT Error-det;"VOLTAGE:ZOTHRESIiOLD ";Data-threshold
2110 END SELECT

Program Examples 5-7

2120 SUBEND
2130 SUB Meas-setup ! This routine alters the measurement setup.
2140 CALL Clr-crt
2150 COM Pattern-gen,Error-det
2160 Gate-loop: !
2170 OUTPUT Error-det;"GATE:MODE?"
2180 ENTER Error-det;Meas-mode$
2190 Meas_mode$=Meas_mode$[l,4]
2200 OUTPUT Error-det;"GATE:PERIOD?"
2210 ENTER Error-det;Meas-per
2220 OUTPUT Error-det;"GATE:STAT?"
2230 ENTER Error-det;Meas-state$
2240 IF Meas-state$=“l” THEN
2250 Meas,state$=“ON”

2260 ELSE
2270 Meas-state$="OFF"
2280 END IF
2290 PRINT TABXY(30,l);"MEASURE SETUP"
alter options.

! Display

2300
2310
2320
2330
2340
2350
2360
2370
2380

PRINT TABXY(i,S);"l - Measurement Mode ";Meas-mode$
PRINT "2 - Measurement Period ";Meas~per;"secs"
PRINT "3 - Measurement Start/Stop ";Meas-state$
PRINT TABXY(1,18);"Enter number to change parameter or"
PRINT "Hit RETURN key for main menu"
INPUT Choice$
SELECT Choice$
CASE "1"

INPUT "Enter the preferred measurement mode MAN/SINC/REP",Meas-mode$

2390 OUTPUT Error-det;"GATE:MODE ";Meas-mode$
2400 CASE "2"
2410 INPUT "Enter the required measurement period in seconds",Meas-per
2420 OUTPUT Error-det;“GATE:PERIOD ";Weas-per
2430 CASE "3"
2440 IF Meas-state$="ON" THEN OUTPUT Error-det;"GATE:STATE 0"
2450 IF Meas-mode$="MAN" OR Meas-mode$="REP" THEN
2460 CALL Man-meas

2470 SUBEXIT
2480 ELSE
2490 CALL Auto-meas
2500 SUBEXIT
2510 END IF
2520 CASE "I'
2530 SUBEXIT
2540 END SELECT
2550 SUBEND
2560 SUB Clr-crt ! This routine clears the screen.
2570 OUTPUT 2 USING "#,K";CHR$(255)&"K"
2580 SUBEND
2590 SUB Clear-instr(Module) ! This routine sets the system to the recommended

2600 ! IEEE 488.2 default.
2610 !
2620 !
2630 CLEAR Module

5-8 Program Examples

2640 OUTPUT Module;"*CLS; *SRE 0; *ESE 0"
2650 OUTPUT Module;"STATUS:PRESET"
2660 SUBEND
2670 !
2680 SUB Sig-gen(Command$,OPTIONAL Reply$) ! This is a utility routine for
2690 ! setting the Signal Generator.
2700 DIM Rev_command$[50]
2710 COM Pattern-gen,Error-det
2720 Rev...command$=REV$(Command$)
2730 IF Rev_command$[2,2]="?" THEN
2740 OUTPUT Pattern-gen;"SYSTEM:PTHROUGH? ";Command$
2750 ENTER Pattern-gen;Reply$
2760 ELSE
2770 OUTPUT Pattern-gen;"SYSTEM:PTHROUGH ";Command$
2780 END IF
2790 SUBEND
2800 SUB Freq-stable ! This routine ensures that the Error Detector is
2810 ! measuring a stable frequency before attempting
2820 ! any measurements.
2830 COM Pattern-gen,Error-det
2840 Freq-stable: !
2850 OUTPUT Error-det;"FETCH:SENSES:FREQUENCY?"
2860 ENTER Error-det;Frequencyl
2870 WAIT 1
2880 OUTPUT Error_det;"FETCH:SENSE2:FREQUENCY?"
2890 ENTER Error_det;Frequency2
2900 DISP "Waiting for frequency to settle";Frequencyl,Frequency2
2910 IF FrequencyloFrequency2 THEN Freq-stable
2920 DISP
2930 SUBEND
2940 SUB Nan-meas ! This routine is called when manual/repetitive gating
2950 ! has been chosen. It prompts the user to hit the
2960 ! RETURN key to halt gating.
2970 ! The subroutine is called when manual/repetative gating has been chosen.

2980 ! It prompts the user to hit the 'RETURN' key to halt gating.
2990 CALL Clr-crt
3000 C O M Pattern-gen,Error-det
3010 OUTPUT Error-det;"GATE:STAT ON"
3020 PRINT "Instrument II.,CHR$(129);"measuring";CHR$(128)
3030 PRINT
3040 PRINT TABXY(1,18);"Hit RETURN key to halt measurement and return to main
menu"
3050 ON KBD GOT0 Continue
3060 Time-loop: !
3070 PRINT TABXY(1,5);"Elapsed time = ";Elapsed-time
3080 WAIT 1
3090 Elapsed-time=Elapsed_time+l
3100 GOT0 Time-loop
3110 Continue: !
3120 OUTPUT Error-det;"GATE OFF"
3130 SUBEXIT
3140 SUBEND
3150 SUB Auto-meas ! This routine is called uhen single shot gating is chosen.

Program Examples 5-9

3160 ! It sets the Error Detector to issue a Service Request
3170 ! to indicate the end of a gating period.
3180 CALL Clr-crt
3190 COM Patt-gen,Error-det
3200 ON INTR 7 GOT0 Abandon
3210 OUTPUT Error-det;":STAT:OPER:ENAB 16"
3220 OUTPUT Error-det;":STAT:OPER:NTR 16"
3230 OUTPUT Error-det;"*SRE 128"
3240 OUTPUT Error-det;"GATE:STATE ON"
3250 OUTPUT Error-det;":STAT:OPER:EVEN?"
3260 ENTER Error-det;Value
3270 Svalue=SPOLL(Error-det)
3280 ENABLE INTR 7;2
3290 PRINT "Waiting for completion of measurement"
3300 Time-loop: ! Set a loop to indicate elapsed gating time.
3310 PRINT TABXY(l,S);"Elapsed time = ",Elap-time,"secs"
3320 WAIT 1
3330 Elap~time=Elap~time+1
3340 GOT0 Time-loop
3350 A=SPOLL(Error-det)
3360 Abandon: I
3370 SUBEND

S-10 Program Examples

10 ! PROGRAM NAME: SYNTAX-CHK
20 !
30 ! PROGRAM DESCRIPTION:
40 ! This program can be used as a tutorial to check command syntax.
50 ! It will generate a Service Request when incorrect commands are
60 ! entered and flag a command error. It could be used for checking
70 ! dubious command syntax when creating program.
80 !
90 CALL Clr-crt ! Clear screen.
100 DIM Answer$[50] ! This string will be used for data returned
110 ' ! from the instrument.
120 Pattern_gen=718 ! Assign HP-IB addresses to variables.
130 COM Pattern-gen ! Store variable Pattern-gen in common memory.
140 A=SPOLL(Pattern-gen) ! Clear any existing SRQ.
150 OUTPUT Pattern-gen;"*CLS" ! Establish default state.
160 ON TIMEOUT 7.2 CALL Int-serv
170 ON INTR 7 CALL Int-serv ! Set interupt branch routine.
180 ENABLE INTR 7;2 ! Enable computer to recognize SRQ.
190 CALL Set-event-srq ! Call the routine to set the reason for SRQ.
200 Command-enter: !
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

REPEAT
CALL Clr-crt

! This repeat loop is simply to allow the

PRINT TABXY(30,I);"Syntax Checker"
Command$="" ! user to enter commands. To trigger the
INPUT “Command ?",Command$! service request, enter an illegal command
OUTPUT Pattern-gen;Command$! string.
Reverse$=REV$(Command$)
IF Reverse$CI,I]="?" THEN ! This little extra routine is optional. It

ENTER Pattern-gen;Answer$! checks to see if the command entered is an
PRINT TABXY(I,25);Answer$! interrogation command and if so asks for a
WAIT 2

END IF ! reply.
WAIT .l

UNTIL Command$="" ! Hitting RETURN key with no characters
DISP "End of program" ! entered will end the progam.
END
SUB Set-event-srq

COM Pattern-gen
! This rountine allows the user to define the conditions in the Standard
! Event Register that will generate a service request.
OUTPUT Pattern-gen; "*ESE 32"! Assign value of mask, enabling bit 5.
OUTPUT Pattern-gen; "*SRE 32"! Set Service Request Enable register to

I ! generate an SRQ when the Standard Event
I ! register summary bit (ESB) is set.

SUBEND
SUB Int-serv

COM Pattern-gen
PRINT TABXY(I,IO)
BEEP 100,.75
Status-byte=SPOLL(Pattern-gen) ! Clear SRQ bit in Status Byte register.
IF BIT(Status-byte,51 THEN

PRINT "Service Request received"
PRINT "*****Command Error******'

END IF
INPUT "Hit RETURN key to resume",Key$

Program Examples 5-l 1

560 OUTPUT Pattern-gen;"*CLS" ! Clear instrument.
570 ENABLE INTR 7;2 ! Re-enable interrupt detect on controller.
580 SUBEND
590 SUB Clr-crt ! This routine clears the screen.
600 OUTPUT 2 USING "#,K";CHR$(255)&"K"
610 SUBEND

5-12 Program Examples

! Program name: SYSTEM-ID10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

! This program identifies the configuration of the system that is
! connected to the HP-IB.

CALL Clr-crt
DIM Identity$[SOl
ON TIMEOUT 7,.2 GOT0 Recovery
PRINT TABXY(20,l);"HP 71600 Series - System Configuration"
PRINT
PRINT
FOR Address=702 TO 730 ! Search through all possible addresses.

DISP Address
A=SPOLL(Address)
OUTPUT Address;"*IDN?"
ENTER Address;Identity$
PRINT Identity$;" at address";Address
IF Address=718 THEN CALL Check-for-slave(Address,Identity$)

190 Recovery: !
200 NEXT Address
210 DISP "End of search"
220 END
230 SUB Check-for-slave(Address,Identity$) ! Check for the presence of a slave.
240 OUTPUT Address;"SYSTEM:PTHROUGH? '*IDN?'"
250 ENTER Address;Identity$
260 PRINT Identity$;" slave present at address";Address
2 7 0 Q u i t :I
280 SUBEND
290 SUB Clr-crt ! Clear screen subroutine.
300 OUTPUT 2;CHR$(255)&"K"
310 SUBEND

Program Examples 5-13

1
2

3

4

5

6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

5-14

REM +*+**+*+*+**+USER PATTERN STORAGE PROGRAM+**************************
I
! This program shows how to recover the user pattern data in Block
I format. It also show how to retransmitt the block data and if necessary
! display or print the entire pattern. Additional SUB routines to build
! your own Pattern are included. Delete the !! at the CALL's to adapt
! the program. You could write an other SUB to store the user Pattern
! block data to disc & recover it.
I
! This program is equally suitable for for use with the HP 70842A
! Error Detector module simply comment out the appropriate line.
I
I---
!REV 2 17 DEC 91 15:00
! CHANGE IF/THEN CONDITION ON LINE 638 TO 255 BITS
! AND CLARIFY MESSAGE WITH LINE 641
!--
I
!--------------------
!REV 3 19 FEB 92
!Reduced line lengths
!Added extra comments
!tested on B modules
!---------------------
I
Nodule_addss=718
Module_addss=717
ALLOCATE Block$[9000]
Block$=" "
Print-addss=i
I

! HP 708418 Pattern Generator addresss
! HP 70842A Error Detector address

! SUITABLE CALL COMBINATIONS ARE 4,5,6,7...OR 1,4,7,8.....OR
! 2,4,7,8.....OR 3.... ..OR SAME AS ABOVE BUT WITH 7 COMMENTED OUT.
!
CALL Build-test-patt(Block$,Patt-length) !l
CALL Build-rpt-patt(Block$,Patt-length) ! 2
CALL Testpatt ! 3
CALL Clear-instr(Module-addss) ! 4
CALL Ck-patt-length(Module_addss,Patt-length) ! 5
CALL Store-user-patt(Module_addss,Block$) ! 6
CALL Print-user-patt(Print_addss,Block$,Patt-length) ! 7
CALL Set-user-patt(Module_addss,Block$,Patt-length) ! 8
I
!
END
8
SUB Clear-instr(Module)
I
! This is the recommended sequence to initialize devices which conform to
! IEEE 488-2.
I
! CLEAR Module
OUTPUT Module;"*CLS; *SRE 0; *ESE 0"
OUTPUT Module;"STATUS:PRESET"

SUBEND

Program Examples

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

I

I

SUB Ck-patt-length(Module,Patt-length)
~***
! NOTE THE NUMBERS FOR UPATTERN MUST MATCH IN THE LINES CONTAINING
! LENGTH? AND DATA?
!***
OUTPUT Module;"PATTERN:UPATTERN4:LENGTH?" ! Select UPATT 1,2,3,or 4
ENTER Module;Patt-length

SUBEND
I
I
i
SUB Store-user-patt(Module,Block$)
OUTPUT Nodule;"PATTERN:UPATTERN4:DATA?" ! select UPATT 1.2.3,or 4
ENTER Module;Block$

SUBEND
I
SUB Print-user-patt(Print_addss,Block$,Patt-length)

DIM Dispblock$[90001 ! Sets up another array.
Length-of-block=LEN(Block$) ! Find length of array
Start_number=VAL(Block$[2,2])+3 ! Miss out header

I
FOR N=Start-number TO Length-of-block

Pointer=Pointer+l ! Initialise new pointer
Bit-value=NUM(Block$[N,NI) ! Assign 1 or 0 to Bit-value
Dispblock$[Pointer,Pointerl=VAL$(Bit_value) ! Fill new $ Dispblock$

NEXT N
I
I
! THIS PRINT ROUTINE GIVES A CLOSE APPROXIMATION TO THE DISPLAY PICTURE.
I

PRINT ! throw a line space
PRINT "Pattern Length: ";Patt-length
PRINT
PRINT II [O] II ; II : II ; II II ;
FOR M=l TO Pointer

PRINT Dispblock$[M,H];
IF M MOD 4=0 THEN PRINT W ";
IF M MOD 32=0 TEEN

PRINT
PRINT II [II ; M ; *I] *I ; II : 14 ; I(II ;

END IF
NEXT M

SUBEND
I
SUB Set-user-patt(Module,Block$,Patt_length)
! OUTPUT Module USING "#,K";":PATTERN:UPATTERN3:DATA ";Block$

OUTPUT Module;":PATTERN:UPATTERN4:LENGTH ";Patt-length
OUTPUT Module;":PATTERN:UPATTERN4:DATA ";TRIM$(Block$)

! To edit Block$:
! Block$[7,7]=CHR$(O) [7.7] is the first data point, the header is
! before this, SOMETINMES IT BE BE <7,7 ! !! !!

LOCAL 717
110 SUBEND

Program Examples 5-15

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
I57
158
159
160
161
162
163
164
165

SUB Build-test-patt(Block$,Patt-length)
I
! This SUB allows you to put your own unique pattern in a DATA array
I
ALLOCATE Build_patt$(9000)[10]

I
! The DATA blocks below were constructed using COPYLINES ! !!
I

DATA 1111, OOOO,1111,OOOO,1111,OOOO,llll,llll,OOOO,llll,OOOO,IlIl,llll,OOOO
DATA 1111, OOOO,1111,OOOO,1111,OOOO,llll,llll,OOOO,IIII,~OOO,IIII,lIII,O~O~
DATA 1111, OOOO,1111,OOOO,l111,OOOO,llll,lill,OOOO,lllI,~OOO,lllI,llll,O~OO
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,111I,~0~0,1111,1111,~0~0
DATA 1111, OOOO,l111,OOOO,111l,OOOO,llll,llll,OOOO,llll,OOOO,llll,IllI,~~~O
DATA 1111, OOOO.1111,OOOO,1111,OOOO,llll,llll,OOOO,lllI,~OOO,llll,lIlI,~~OO
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,111I,~~00
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0~0~
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,111I,1111,00~0
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0~00
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, OOOO,1111,OOOO,1111,OOOO,llll,llll,OOOO,llll,OOOO,llII,IlIl,OOOO
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,11I1,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,00~0,1111,1111,0000
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111. 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111.0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111. 0000,1111,0000,1111,0000,1111,111i,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000,1111.0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111. 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111.0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,111~,00oo
DATA 1111, 0000,11I1,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000

5-16 Program Examples

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, OOOO,l111,OOOO,1111,OOOO,lIll,llll,OOOO,iIIl,OOOO,IlII,Illi,OOOO
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, OOOO,1111,OOOO,1111,OOOO,llll,llll,OOOO,llll,OOOO,ilII,IIlI,OOOO
DATA 1111, OOOO,1111,OOOO,1111,OOOO,lill,llll,OOOO,llii,OOOO,IIII,IiII,OOOO
DATA 1111, OOOO,1111,OOOO,1111,OOOO,illl,llll,OOOO,lill,OOOO,llll,iIII,OO~~
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, OOOO,1111,OOOO,l111,OOOO,llll,llll,OOOO,lill,OOOO,llli,lill,OOOO
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1I11,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1I11,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,i111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,11I1,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000.1111,1111.0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000.1111,0000,1111,1111,0000,1111,00~0,1111,111I.0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,I111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000.1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111. 0000,1111.0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,1111,0000
DATA 1111, 0000,1111,0000,1111,0000,1111,1111,0000,1111,0000,1111,F1N

REPEAT
READ Build-patt$(N)
N=N+l

UNTIL Build-patt$(N-I)="FIN"

N=O
Strbit=l

LOOP
EXIT IF Build-patt$(N)="FIN"
FOR Bit=1 TO 4

Block=VAL(Build-patt$(N)[Bit,Bit])
Block$[Strbit,Strbitl=CIiR$(Block)
Strbit=Strbit+l

NEXT Bit

Program Examples 5-17

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

N=N+l
END LOOP

I
! BUILD BLOCK
Patt-length=LEN(Block$)
IF PattJength>255 THEN

Remainder=Patt-length MOD 32
IF Remainder>0 THEN

PRINT "IF YOUR PATTERN LENGTH IS 256 BITS OR LONGER"
PRINT "YOU MUST RESTRUCTURE DATA IN MULTIPLES OF 32 BITS."
PRINT "RESET THE COMPUTER AND ALTER THE PROGRAM BITS"
PRINT "IN ONE OFTHE DATA LINES..........."
PRINT "YOU NEED ";Remainder/4;"FEWER WORDS OR ";
PRINT (32-Remainder)/4;" MORE WORDS"
PAUSE

END IF
END IF
Patt-length$=VAL$(Patt-length)
Number-digits=LEN(Patt_length$)
Number-digits$=VAL$(Number_digits)
Header$="#"BNumber_digits$&Patt-length$
Block$=Header$&Block$

I
SUBEND
SUB Build-rpt-patt(Block$,Patt_length)

I
I
! This SUB builds a repeating 4 bit word pattern. You could easily
! change this to an 8, 16, or 32 bit word. If you do this you will
! need to change the TRAP.

No-4bit_words=99 !Pattern length must go up in multiples of 32
!above lengths of 256 (64 4bit-words ~256 length)

I
?***+*******TRAP TO SET PATTERN LENGTH FOR 4 BIT WORDS***********
IF No_4bit_words>63 THEN

Remainder=No_4bit_words*4 MOD 32
IF Remainder>0 THEN

No-4bit-words=((32-Remainder)+No_4bit_aords*4)/4
PRINT "Pattern Length increased to ";No_4bit_words*4

END IF
END IF

!***~*****************
ALLOCATE Build-patt$(9000)ClOl
Word$=VAL$(l)&VAL$(l)tVAL$(l)&VAL$(O) ! 4 BIT WORD
I
REPEAT

Build-patt$(N)=Word$
N=N+l

UNTIL N=No_4bit_words
8
N=O
Strbit=l
I
LOOP
EXIT IF N=No_4bit_words

5-l 8 Program Examples

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

FOR Bit=1 TO 4
Block=VAL(Build-patt$(N)[Bit,Bitl)
Block$[Strbit,Strbit]=CHR$(Block)
Strbit=Strbit+l

NEXT Bit
N=N+l

END LOOP

! BUILD UP BLOCK$
PattJength=LEN(Block$)
PattJength$=VAL$(Patt_length)
Number-digits=LEN(PattJength$)
Number-digits$=VAL$(Number_digits)
Header$="#"%Number_digits$%Patt-length8
Block$=Header$%Block$

SUBEND
SUB Testpatt
! -------------------~~--~~~~~~~~~~~~-------~------------~---~~~~~~~~
! This SUB uses the CTRL key on the computer
! CTRL SPACE BAR =0, CTRL A = 1.
! Work out the header for yourself !
! The 10 represents the numberof bits to follow....
! while the 2 preceding the 10 tells you the number of
! digits there are in 10.
I---

!**

! If this program is transferred as an ASCII file or printed out the
! CTRL characters become invisiblethere are 10 CTRL characters in
! the OUTPUT line immediately following #210 .
!**

OUTPUT 717;":PATT:UPAT3:DATA #210

SUBEND

Program Examples 5-19

6
TMSL Command Definition Quick Reference

TMSL Command Definition Quick Reference Guide

Introduction

The following pages list the TMSL commands for the HP 71GOOB Pattern Generator (HP
70841B) and Enor Detector (HP 70842B)modules.

The Pattern Generator

The SOURce subsystem

SOURcel: The Data Source

KEYWORD

[SOURce[l]:]
PATTern

C:SELect]

[:SELect]?

:ZSUBstitut
[:ZRUN]
[:ZRUN]?

:MDENsity
[:DENSity]
[:DENSityl?

:UPATtern<n>
[:LENGth]
[:LENGth]?
:LABel
:LABel?
:USE
:USE?
:DATA
:DATA?
:IDATa
:IDATa?

:FORMat

PARAMETER FORM

PRBS<n>lZSUBstitut<n>l
MDENsity<n>lUPATtern<n>lAWORd
PRBS<n>lZSUB<n>l
MDEN<n>lUPATIAWORd

<numeric value)
<NRl>

<numeric value>
<NR3>

COMMENTS

<numeric value>
<NRl>
<string>
<string>
STRaightlAPATtern
STR lAPAT
[AI B, 1 <block data>
[AlB,]<block data>
[A IB ,l<start bit>,<length in bits>,<block data>
[AIB,]<start bit>,<length in bits>

TMSL Command Definition Quick Reference 6-1

[:DATA]
[:DATA]?

:AWORd
:DATA<n>
:DATA<n>?

:APCHange
:SOURce
:SOURce?
:MODE
:MODE?
:SELect
:SELect?
:IBHalf

PACKed,<numeric value>
PACK,<NRl>

<NRf>(,<NRf>)
<NRl>(,<NRl>)

EXTernallINTernal
EXTlINT
ALTernatelONEShot
ALTIONES
AHALftBHALf
AHALIBHAL
ONCE

:EADDition ONCEl<boolean>
:SOURce EXTernallFIXed
:SOURce? EXTIFIX
:RATE <numeric value>
:RATE? <NR3>

VOLTage
[:LEVel]

[:IMMediate]
[:AMPLitudel <numeric value>
[:AMPLitude]? <NR3>
:HIGH <numeric value>
:HIGH? <NR3>

:ATTenuation <numeric value>
:ATTenuation? <NR3>
:ECL e-w

only if INT & ALT
only if INT 8 ALT
only if INT % ONES
event; no query

event; no query

6-2 TMSL Command Definition Quick Reference

SOURce2: The Clock Source

KEYWORD PARAMETER FORM

SOURce2
:FREQuency

[:CWI:FIXed]?
:VOLTage

[:LEVel]
[:IMMediate]

[:AMPLitude]
[:AMPLitude]?
:HIGH
:HIGH?

:ATTenuation
:ATTenuation?
:ECL

<NR3>

<numeric value>
<NR3>
<numeric value>
<NR3>
Qm.3neric value>
<NR3>

SOURce3: The Trigger Source

KEYWORD

SOURce3
:TRIGger

[:MODE]
[:MODE]?
:CTDRatio?
:PRBSn>
:PRBS<n>?
:ZSUBstitut<n>
:ZSUBstitut<n>?
:MDENsity<n>
:MDENsity<n>?
:UPATtern<n>
:UPATtern<n>?
:APATtern<n>
:APATtern<n>?

PARAMETER FORM

PATTernlDCLock
PATTlDCL
<NR3>

<NRf>(,<NRf>)
<NRl>(,<NRl>)
<numeric value>
<NRl>
<numeric value>
<NRl>
<numeric value>
<NRl>
ABCHangelSOPattern
ABCHISOP

COMMENTS

query only

event; no query

COMMENTS

query only

TMSL Command Definition Quick Reference 6-3

The OUTPut subsystem

OUTPutl: The Data Output

KEYWORD PARAMETER

OUTPut[l]
[:STATe]
[:STATe]?
:POLarity
:POLarity?
:DELay
:DELay?
:TERMination
:TERMination?
:OPTimize
:OPTimize?

<boolean>
<boolean>
NORMallINVerted
NORMIINV
<numeric value>
<NR3>
<numeric value>
<NRl>
DATAlDADBar
DATAIDADB

OUTPut2: The Clock Output

KEYWORD PARAMETER FORM

COMMENTS

COMMENTS

OUTPut
:TERMination
:TERMination?

<numeric value>
<NRl>

The MMEMory subsystem

KEYWORD PARAMETER FORM COMMENTS

MMEMory
:INITialize
:DELete
:CATalog?
:MPResent?
:CPDisc
:ICPDisc

<file name> event; no query
<NR3>,<NR3>C,<file entry>) query only
<boolean> query only
<NRl> event; no query
<NRl>,<NRl>,<NRl>,<NRl> event; no query

6-4 TMSL Command Definition Quick Reference

The SYSTem subsystem

KEYWORD

SYSTem
:BEEPer

[:IMMediate]
:ERRor?
:KLOCk
:KLOCk?
:PRESetl:PRESet<n>
:PTHRough

C:STRingl
[:STRingl?

:VERSion?

The STATUS subsystem

KEYWORD

STATUS
:QUEStionable

[:EVENt]?
:CONDition?
:ENABle
:ENABle?
:PTRansition
:PTRansition?
:NTRansition
:NTRansition?

:PRESet
:FAILure

[:EVENt]?
:SSERvice

[:EVENt]?
:ENABle
:ENABle?

PARAMETER FORM COMMENTS

C<freq>[,<time>[,<vol~lll parms no effect
<NRl>,<string> query only
<boolean>
<boolean>
m-e event; no query

<string>
<string>
<NR2>

PARAMETER FORM COMMENTS

<NRl>
<NRl>
<NRf>
<NRl>
<NRf>
<NRl>
<NRf>
<NRl>

a--

<NRl>

<NRl>
<NRf>
<NRl>

query only

query only
query only

event; no query

query only

query only

TMSL Command Definition Quick Reference 6-5

IEEE Common Commands

Mandatory Commands

KEYWORD

*cLs
*ESE
*ESE?
*ESR?
*IDN?
*opt
*oPc?
*ET
*SRE
*SRE?
*STB?
*TST?
*WA1

Optional Commands

KEYWORD

*OPT?
*psc
*PSC?
*RCL
*SAV

PARAMETER FORM

<NRf>
<NRl>
<NRl>
<string>

<NRl>

m-m
<NRf>
<NRl>
<NRl>
<NRl>

-me

PARAMETER FORM

<NRl>
<NRf>
<NRl>
<NRf>
<NRf>

COMMENTS

event; no query

query only
query only

event; no query

query only
query only

COMMENTS

query only

event; no query
event; no query

6-6 TMSL Command Definition Quick Reference

PART 2: Error Detector

The SENSe subsystem

SENSeI: The Data Sense

KEYWORD

[SENSe C11:l
PATTern

[:SELect]

[:SELect]?

:ZSUBstitut
[:ZRUN]
[:ZRUN]?

:MDENsity
[:DENSity]
[:DENSity]?

:UPATtern<n>
[:LENGth]
[:LENGth]?
:LABel
:LABel?
:USE
:USE?
:DATA
:DATA?
:IDATa
:IDATa?

:FORMat
[:DATA]
[:DATA]?

VOLTage
:ZOTHreshold
:ZOTHreshold?

:AUTO
:AUTO?

GATE
[:STATe]
[:STATe]?
:MODE
:MODE?
:MANNer
:MANNer?
:PERiod

[:TIME]
[:TIME]?

PARAMETER FORM

PRBS<n>lZSUBstitut<n>(
MDENsity<n>lUPATtern<n>
PRBS<n>lZSUB<n>l
MDEN<n>lUPAT

COMMENTS

<numeric value>
<NRl>

<numeric value>
<NR3>

<numeric value>
<NRl>
<string>
<string>
STRaightlAPATtern
STRIAPAT
[A IB ,]<block data>
[AIB,]<block data>
[AIB,]cstart bit>,<length in bits>,<block data>
[AIB,]<start bit>,<length in bits>

PACKed,<numeric value>
PACK,<NRl>

<numeric value>
<NR3>
<boolean>
<boolean>

<boolean>
<boolean>
MANuallSINGlelREPetitive
MANISINGIREP
TIMElERRorslBITS
TIMEIERRIBITS

<numeric value>
<NRl>

TMSL Command Definition Quick Reference 6-7

:ERRors
:ERRors?
:BITS
:BITS?

SYNChronisat
SYNChronisat?

:THReshold
:THReshold?

LOGGing
LOGGing?

:SQUelch
:SQUelch?
:ALARms
:ALARms?
:THReshold
:THReshold?
:DURing

[:EVENt]
[:EVENt]?

:END
[:EVENt]
[:EVENt]?
:REPort
:REPort?

EYE
:TCENterJ:TCENtre
:TCENter?:)TCENtre?
:ACENter/:ACENtre
:ACENter?:IACENtre?
:WIDTh?
:HEIGht?
:THReshold
:THReshold?

SENSe2: The Clock Sense

KEYWORD

SENSe2
:VOLTage

:EDGE
:EDGE?

<numeric value>
<NRl>
<numeric value>
<NR3>
ONCEi<boolean>
<boolean
<numeric value>
<NR3>
ONCEi<boolean>
<boolean>
<boolean>
<boolean>
<boolean>
<boolean>
<numeric parm>
<NR3>

NEVerlESECondlERGThrshld
NEViESEClERGT

NEVerIALWaysINZECountITERGthrshld
NEVlALWlNZEClTERG
FULLIUREP
FULLIUREP

ONCEl<boolean>
<boolean>
ONCEl<boolean>
<boolean>
<NR3>
<NR3>
<numeric value>
<NR3>

PARAMETER FORM

POSitivelNEGative
POSINEG

query only
query only

COMMENTS

6-8 TMSL Command Definition Quick Reference

The INPut subsystem

INPutl: The Data input

KEYWORD

INPut[l]
:POLarity
:POLarity
:DELay
:DELay?
:TERMination
:TERMination?

INPut2: The Clock Input
KEYWORD

PARAMETER FORM COMMENTS

NORMallINVerted
NORMIINV
Qmmeric value>
<NR3>
<numeric value>
<NRl>

PARAMETER FORM

INPut
:TERMination
:TERMination?

<numeric value>
<NRl>

The Measurement subsystem

KEYWORD PARAMETER FORM

FETChlPFETch
C:SENSe Cl11

:ECOunt
[:ALL]

[:TOTal]?
:DELTa?

:ZASone
[:TOTall?

:OASZero
[:TOTal]?

:ERATio
[:ALL]

C:TOTal]?
:DELTa?

:ZASone
[:TOTal]?

:OASZero
[:TOTal]?

:EINTerval
:SEConds?
:DSEConds?
:CSEConds?
:MSEConds?

<NR3>
<NR3>

<NR3>

<NR3>

<NR3>
<NR3>

<NR3>

<NR3>

<NR3>
<NR3>
<NR3>
<NR3>

COMMENTS

COMMENTS

query only
query only

query only

query only

query only
query only

query only

query only

query only
query only
query only
query only

TMSL Command Definition Quick Reference 6-9

:EFINterval
:SEConds?
:DSEConds?
:CSEConds?
:MSEConds?

:LOSS
:POWer?
:SYNChronisat?

:G821
:AVAilability?
:UNAVailabili?
:SESeconds?
:DMINutes?
:ESEConds?

:GATE
:ELAPsed?

:LTEXt?
:SENSe2

:FREQuency?

DlSPlay subsystem

KEYWORD

DISPlay
:SHOW
:SHOW?
:PAGE

:PAGE?
:REPort
:REPort?
:UPAGe

[:DEFine]

<NR3>
<NR3>
<NR3>
<NR3>

<NR3>
<NR3>

<NR3>
<NR3>
<NR3>
<NR3>
<NR3>

<NR3>
<string>

<NR3>

PARAMETER FORM

query only
query only
query only
query only

query only
query only

query only
query only
query only
query only
query only

query only
query only

query only

COMMENTS

PGENeratorlEDETectorlBOTH
PGENlEDETlBOTH
USERlISTatusiMSTatuslLSTatusl
MRESultslIRESultslG82llZOOZ results
USERlISTlMSTlLSTlMRESlIRESlG82llZOOZ
PREViouslCURRent
PREVICURR

ECOuntl
DCOuntl
ERATiol
DRATiol
GELapsedl
BECountl
BEDCountl
BERatiol
BEDRatiol
BGELapsedl
OECount I
ZECount I
OERatiol
ZERatiol
DTIMel
PIDentityl

6-10 TMSL Command Definition Quick Reference

[:DEFine]?
:CLEar

The SYSTem subsystem

KEYWORD

SYSTem
:BEEPer

[:IMMediatel
:STATe
:STATe?

ERSecondsl
EDSeconds
ECSecondsl
EMSeconds
CFRequencyl
EFSecondsl
EFDSeconds
EFCSeconds
EFMSeconds
BLANkI
AVAilabilityi
UNAVailabilil
SESecondsl
ERDSecondsl
DMINutes I
SMODel
ZOTMode I
DTERmination I
TERMinationi
DPOLarity I
DIDelayl
CEDGe I
GMODei
GREPortl
GPERiodl
PLSecondsl
SLSeconds
LGSTatus I
ALOGging
LDTRigger
LETRigger
LEReport I
LTHResholdl
SSTatusl
HCONtrollerl
EETHresholdl
EWIDthl
EHEight
<boolean>

for backwards compatibility

-me event; no query

PARAMETER FORM COMMENTS

[<freq>[,<time>[,~V01~111 parms no effect
<boolean>
<boolean>

TMSL Command Definition Quick Reference 6-11

:ERRor?
:KLOCk
:KLOCk?
:PRESetl:PRESet<n>
:PTHRough

[:STRing]
[:STRing]?

:VERSion?
:DATE
:DATE?
:TIME
:TIME?
:FREVision

:MPRocessor

The STATUS subsystem

KEYWORD

STATUS
:OPERtionable

[:EVENt]?
:CONDition?
:ENABle
:ENABle?
:PTRansition
:PTRansition?
:NTRansition
:NTRansition?

:QUEStionable
[:EVENt]?
:CONDition?
:ENABle
:ENABle?
:PTRansition
:PTRansition?
:NTRansition
:NTRansition?

:PRESet
:FAILure

[:EVENt]?
:SSERvice

[:EVENt]?
:ENABle
:ENABle?

<NRl>,<string>
<boolean>
<boolean>

<string>
<string>
<NR2>
<year>,<month>,<day>
<year>,<month>,<day>
<hour>,<minute>,<second>
<hour>,<minute>,tsecond>

<string>

PARAMETER FORM

<NRl>
<NRl>
<NRf>
<NRl>
<NRf>
<NRl>
<NRf>
<NRl>

<NRl>
<NRl>
<NRf>
<NRl>
<NRf>
<NRl>
<NRf>
<NRl>

<NRl>

<NRl>
<NRf>
<NRl>

query only

event; no query

query only

query only

COMMENTS

query only
query only

query only
query only

event; no query

query only

query only

6-12 TMSL Command Definition Quick Reference

IEEE Common Commands

Mandatory Commands

KEYWORD

*cLs
*ESE
*ESE?
*ESR?
*IDN?
*OPC
*OPC?
*RST
*SRE
*SRE?
*STB?
*TST?
*WA1

Optional Commands

KEYWORD

*OPT?
*psc
*Psc?
*RCL
*SAV

PARAMETER FORM

<NRf>
<NRl>
<NRl>
<string>

- - -

<NRl>

<NRf>
<NRl>
<NRl>
<NRl>

PARAMETER FORM

<NRl>
<NRf>
<NRl>
<NRf>
<NRf>

COMMENTS

event; no query

query only
query only

event ; no query

query only
query only

COMMENTS

query only

event; no query
event; no query

TMSL Command Definition Quick Reference 6-13

SCPI Conformance Information

SCPI Conformance Information
This section details how the Hewlett-Packard 71600B Series of Gbit/s Testers conform to
Standard Commands for Programmable Instruments (SCPI). It lists separately:

n The SCPI version to which the instruments comply.

w The commands confirmed by SCPI.

n The commands approved by SCPI.

n The commands which are not yet part of the SCPI definition.

SCPI Version
The HP 71600B Series of Gbit/s Testers complies with SCPI-1990.0

SCPI Confirmed Commands
The following commands are confirmed by SCPI.

[SOURce[l] :]
VOLTage

[:LEVel]
[:IMMediate]

[:AMPLitude]
[:AMPLitude]?
:HIGH
:HIGH?

:ATTenuation
:ATTenuation?

PATTern
:FORMAT

[:DATA]
[:DATA]?

SOURce2
:FREQuency

[:CWI:FIXed]?
:VOLTage

[:LEVel]

SCPI Conformance Information 1

C IMMediateI
[:AMPLitude]
[:AMPLitude]?
[:HIGH]
[:HIGH]?

:ATTenuation
:ATTenuation?

OUTPut[l]
[:STATE]
[:STATE]?

MMEMory
:INITialize
:DELete
:CATalogue?

[SENSeCll :I
PATTern

:FORMat
[:DATA]
[:DATA]?

SYSTem
:BEEPer

C:IMMediate]
:ERRor?
:KLOCk
:KLOCk?
:PRESet
:VERSion?
:DATE
:DATE?
:TIME
:TIME?

STATUS
:QUEStionable

[:EVENt]?
:CONDition
:CONDition?
:ENABle
:ENABle?
:PTRansition
:PTRansition?
:NTRansition
:NTRansition?
:PRESet

2 SCPI Conformance Information

:ClPERation
[:EVENt]?
:CONDition
:CONDition?
:ENABle
:ENABle?
:PTRansition
:PTRansition?
:NTRansition
:NTRansition?
:PRESet

*cLs
*ESE
*ESE?
*ESR?
*IDN?
*OPC
*OPC?
*RST
*SRE
*SRE?
*STB?
*TST?
*WA1
*OPT?
*PSC
*PSC?
*RCL
*SAV

SCPI Approved Commands
There are no commands in this category.

SCPI Conformance information 3

Non SCPI Commands
The following commands are not yet part of the SCPI standard.

[SOURce[ll :]
PATTern

[:SELect]
C:SELect]?
:ZSUBstitut

[:ZRUN]
[:ZRUN]?

:MDENsity
[:DENSity]
[:DENSity]?

:UPATtern<n>
[:LENGth]
[:LENGth]?
:LABel
:LABel?
:USE
:USE?
:DATA
:DATA?
:IDATa
:IDATa?

:AWORd
:DATACn>
:DATA<n>?

:APCHange
: SOURce
: SOURce?
:MODE
:MODE?
:SELect
:SELect?
:IBHalf

:EADDition
: SOURce
:SOURce?
:RATE
:RATE?

VOLTage
:ECL

SOUFtce2 : 1
VOLTage

:ECL

SOURce3:
TRIGger

[:MODE]

4 SCPI Conformance Information

01

[:MODE]?
:CTDRatio?
:PRBS<n>
:PRBS<n>?
:ZSUBstitut<n>
:ZSUBstitut<n>?
:MDENsity<n>
:MDENsity<n>?
:UPATtern<n>
:UPATtem<n>?
:APATtem<n>
:APATern<n>?

TPut[ll
:POLarity
:POLarity?
:DELay
:DELay?
:TERMination
:TERMination?
:OPTimize
:OPTimize?

OUTPut
:TERMination
:TERMination?

SYSTem
:PTHRough

[:STRingl
[:STRind?

:FREVision
:MPRocessor?

MMEMORY
:MPResent?
:CPDisc<n>
:ICPDisc<n>,<n>,<n>,Q0

STATUS
:FAILure

[:EVENt]
[:EVENt]?

:SSERvice
[:EVENtl
[:EVENt]?
:ENABLE
:ENABLE?

CSENSe Cll:l
VOLTage

:ZOTHreshold
:ZOTHreshold?

SCPI Conformance Information 5

:AUTO
: AUTO?

GATE
[:STATe]
C:STATe]?
:MODE
:MODE?
:MANNER
:MANNER?
:PERiod

[:TIME]
[:TIME]?
:ERRors
:ERRors?
:BITS
:BITS?

SYNChronisat
SYNChronisat?

:THReshold
:THReshold?

LOGGing
LOGGing?

:SQUelch
:SQUelch?
:ALARms
:ALARms?
:THReshold
:THReshold?
:DURing

[:EVENtl
[:EVENtl?

:END
[:EVENt]
[:EVENt]?
: REPort
:REPort?

EYE
:TCENter
:TCENter?
:ACENter
:ACENter?
:WIDTh?
:HEIGht?
:THReshold
:THReshold?

SENSe2
:VOLTage

:EDGE
:EDGE?

6 SCPI Conformance Information

INPut[l]
:POLarity
:POLarity?
:DELay
:DELay?
:TERMination
:TERMination?

INPut
:TERMination
:TERMination?

FETChlPFETch
[:SENSe[l]]

:ECOunt
[:ALL]

[:TOTal]?
:DELTa?

:ZASone
[:TOTAL]?

:OASZero
C:TOTal]?

:ERATio
[:ALLl

C:TOTal]?
:DELTa?

:ZASone
[:TOTal]?

:OASZero
[:TOTal]?

:EINTerval
:SEConds?
:DSEConds?
:CSEConds?
:MSEConds?

:EFINterval
:SEConds?
:DSEConds?
:CSEConds?
:MSEConds?

:LOSS
:POWer?
:SYNChronisat?

:G821
:AVAilability?
:UNAVailabili?
:SESeconds?
:DMINutes?
:ESEConds?

:GATE

SCPI Conformance Information 7

: ELAPsed?
: LTEXt ?

: SENSe2
:FREQuency?

DISPlay
: SHOW
: SHOW?
: PAGE
: PAGE?
: REPort
: REPort?
: UPACe

[: DEF inel
[: DEFineI ?
: CLEar

8 SCPl Conformance Information

SCPI Messages

The system-defined error/event numbers are chosen on an enumerated (“1 of N”) basis. The
SCPI defined error/event numbers and the < error description > portions of the ERRor query
response are listed here. The first error/event described in each class (for example, -100,
-200, -300, -400) is a “generic” error. In selecting the proper error/event number to report,
more specific error/event codes a.re preferred, and the generic error/event is used only if the
others are inappropriate.

No Error
This message indicates that the device has no errors.

0 No Error

The queue is completely empty. Every error/event in the queue has been read or the queue
was purposely cleared by power-on, *CLS, etc.

Command Errors [-199, -100]
An < error/event number > in the range [-199, -100] indicates that an IEEE488.2 syntax
error has been detected by the instrument’s parser. The occurrence of any error in this class
should cause the command error bit (bit 5) in the event status register (IEEE 488.2, section
11.5.1) to be set. One of the following events has occurred:

n An IEEE 488.2 system error has been detected by the parser. That is, a controller-to-device
messa.ge was received which is in violation of the IEEE 488.2 standard. Possible violations
include a data element which violates the device listening formats or whose type is
unacceptable to the device.

n An unrecognized header was received. Unrecognized headers include incorrect device-specific
headers and incorrect or unimplemented IEEE 488.2 common commands.

n A Group Execute Trigger (GET) was entered into the input buffer inside of an IEEE 488.2
< PROGRAM MESSAGE >.

Events that generate command errors shall not generate execution errors, device-specific
errors: or query errors.

Messages-l

- 100 Command error

This is the generic syntax error for devices that cannot detect more specific errors. This code
indicates only that a Command Error as defined in IEEE 488.2, 11.5.1.1.4 has occurred.

- 101 Invalid character

A syntactic element contains a character which is invalid for that type; for example, a header
containing an ampersand, SETUP&. This error might be used in place of errors -114, -121,
-141, and perhaps some others.

- 102 Syntax error

An unrecognized command or data type was encountered; for example, a string was received
when the device does not accept strings.

-103 Invalid separator

The parser was expecting a separator and encountered an illegal character; for example, the
semicolon was omitted after a program message unit, *EMC 1 :CHl:VOLTS 5.

-104 Data type error

The parser recognized a data element different than one allowed; for example, numeric or
string data was expected but block data was encountered.

-105 GET not allowed

A Group Execute Trigger was received within a program message (see IEEE 488.2, 7.7).

-108 Parameter not allowed

More parameters were received than expected for the header; for example, the *EMC common
command only accepts one parameter, so receiving *EMC 0,l is not allowed.

- 109 Missing parameter

Fewer parameters were received than required for the header; for example, the *EMC common
command requires one parameter, so receiving *EMC is not allowed.

-110 Command header error

An error was detected in the header. This error message should be used when the device
cannot detect the more specific errors described for errors -111 through -119.

-111 Header separator error

A character which is not a legal header separator was encountered while parsing the header;
for example, no white space followed the header, thus ‘GMC“MACR.0” is an error.

-112 Program mnemonic too long

The header contains more that twelve characters (see IEEE 488.2, 7.6.1.4.1).

Messages-2

-113 Undefined header

The header is syntactically correct, but it is undefined by this specific device; for example,
*XYZ is not defined for any device.

-114 Header suffix out of range

Indicates that a nonheader character has been encountered in what the parser expects is a
header element.

-120 Numeric data error

This error, as well as errors -121 through -129, are generated when parsing a data element
which appears to be numeric, including the nondecimal numeric types. This particular error
message should be used if the device cannot detect a more specific error.

-121 Invalid character in number

An invalid character for the data type being parsed was encountered; for example, an alpha in
a decimal numeric or a “9” in octal data.

-123 Exponent too large

The magnitude of the exponent was larger than 32000 (see IEEE 488.2,‘7.7.2.4.1).

-124 Too many digits

The mantissa. of a decimal numeric data element contained more than 255 digits excluding
leading zeros (see IEEE 488.2, 7.7.2.4.1).

-128 Numeric data not allowed

A legal numeric data element was received, but the device does not accept one in this position
for the header.

-130 Suffix error

This error, as well as errors -131 through -139, are generated when parsing a suffix. This
particular error message should be used if the device cannot detect a more specific error.

-131 Invalid suffix

The suffix does not follow the syntax described in IEEE 4SS.2, 7.7.3.2, or the suffix is
inappropriate for this device.

-134 suffix too long

The suffix contained more tha.n 12 characters (see IEEE 488.2, 7.7.3.4).

-138 Suffix not allowed

A suffix was encountered after a numeric element which does not allow suffixes.

Messages-3

- 140 Character data error

This error, as well as errors -141 through -149, are generated when parsing a character data
element. This particular error message should be used if the device cannot detect a more
specific error.

-141 Invalid character data

Either the character data element contains an invalid character or the particular element
received is not valid for the header.

-144 Character data too long

The character data. element contains more than twelve characters (see IEEE 488.2, 7.7.1.4).

-148 Character data not allowed

A legal character data element was encountered where prohibited by the device.

-150 String data error

This error, as well as errors -151 through -159, are generated when parsing a string data
element. This particular error message should be used if the device cannot detect a more
specific error.

-151 Invalid string data

A string da.ta element was expected, but wa.s invalid for some reason (see IEEE 488.2, ‘7.7.5.2);
for example, an END message was received before the terminal quote character.

-158 String data not allowed

string data element was encountered but was not allowed by the device at this point in
parsing.

-160 Block data error

This error, as well as errors -161 through -169, are generated when parsing a block data
element. This particular error message should be used if the device cannot detect a more
specific error.

-161 Invalid block data

A block dat,a element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.6.2);
for example, an END message was received before the length was satisfied.

-168 Block data not allowed

A legal block data element was encountered but was not allowed by the device at this point in
parsing.

Messages-4

-170 Expression error

This error, as well as errors -171 through -179, are generated when parsing an expression
data element. This particular error message should be used if the device cannot detect a more
specific error.

-171 Invalid expression

The expression data element was invalid (see IEEE 488.2, 7.7.7.2); for example, unmatched
parentheses or an illegal character.

-178 Expression data not allowed

A legal expression data was encouutered but was not allowed by the device at this point in
parsing.

-180 Macro error

This error, as well as errors -181 through -189, are generated when defining a macro or
executing a macro. This particular error messa.ge should be used if the device cannot detect a
more specific error.

-181 Invalid outside macro definition

Indicates that a macro parameter placeholder ($<number) was encountered outside of a macro
definition.

-183 Invalid inside macro definition

Indicates that the program message unit sequence, sent with a *DDT or ‘DMC command, is
syntactically invalid (see 10.7.6.3).

-184 Macro parameter error

Indicates that a command inside the macro definition had the wrong number or type of
parameters.

Execution Errors [-299, -200]
An < error/event number > in the range [-299, -200] indica.tes that an error has been
detected by the instrument’s execution control block. The occurrence of any error in this class
should cause the execution error bit (bit 4) in the event status register (IEEE 468.2, section
11.5.1) to be set. One of the following events ha.s occurred:

m A < PROGR.AM DATA > element following a hea.der was evaluated by the device as
outside of its legal input range or is otherwise inconsistent with the device’s capabilities.

n A valid program message could not be properly executed due to some device condition.

Execution errors shall be reported by the device after rounding and expression evaluation
operations have taken place. Rounding a numeric data element, for example, shall not be
reported as an execution error. Events that generate execution errors shall not generate
Command Errors, device-specific errors, or Query Errors.

Messages-S

-200 Execution error

This is the generic syntax error for devices that cannot detect more specific errors. This code
indicates only that an Execution Error as defined in IEEE 488.2, 11.5.1.1.5 has occurred.

-201 Invalid while in local

Indicates that a command is not esecuta.ble while the device is in local due to a hard local
control (see IEEE 488.2, 5.6.1.5); for example, a device with a rotary switch receives a
message which would change the switches state, but the device is in local so the message can
not be esecuted.

-202 Settings lost due to rtl

Indicates that a setting a.ssociated with a hard local control (see IEEE 488.2, 5.6.1.5) was lost
when the device changed to LOCS from REMS or to LWLS from RWLS.

-210 Trigger error

-211 Trigger ignored

Indicates that a GET, *TRG, or triggering signal was received and recognized by the device
but wa.s ignored beca.use of device timing considera.tions; for esa.mple, the device was not
ready to respond. Note: a DTO device always ignores GET and treats *TRG as a Command
Error.

-212 Arm ignored

Indicates that an arming sigual was received and recognized by the device but was ignored.

-213 Init ignored

Indicates that a request for a measurement initia.tion was ignored as another measurement was
already in progress.

-214 Trigger deadlock

Indicates that the trigger source for the initiation of a measurement is set to GET and
subsequent measurement query is received. The measurement cannot be started until a GET
is received, but the GET would cause an INTERRUPTED error.

-215 Arm deadlock

Indicates that the arm source for the initiation of a. measurement is set to GET and
subsequent measurement query is received. The measurement cannot be started until a GET
is received. but the GET would cause an INTERR.IJPTED error.

-220 Parameter error

Indicates tha.t a. program da.ta element related error occurred. This error message should be
used when the device cannot detect the more specific errors described for errors -221 through
-229.

Messages-6

-221 Setting conflict

Indicates that a legal program data element was parsed but could not be executed due to the
current device state (see IEEE 4SS.2, 6.4.5.3 and 11.5.1.1.5.)

-222 Data out of range

Indicates that a legal program data element was parsed but could not be executed because
the interpreted value was outside the legal ra.nge as defined by the device (see IEEE 488.2,
11.5.1.1.5.)

-223 Too much data

Indicates that a legal program data element of block, expression, or string type was
received that contained more data than the device could handle due to memory or related
device-specific ,requirements.

-224 Illegal parameter value

Used where exact value, from a list of possibles, was expected.

-230 Data corrupt or stale

Possibly invalid data.; new rea.ding started but not completed since last access.

-231 Data questionable

Indicates that measurement accuracy is suspect.

-240 Hardware error

Indicates that a legal program command or query could not be executed because of a
hardware problem in the device. Definition of wha.t constitutes a hardware problem is
completely device-specific. This error message should be used when the device cannot detect
the more specific errors described for errors -241 through -249.

-241 Hardware missing

Indicates that a. legal pr0gra.m command or query could not be executed because of missing
device hardware; for example, an option was not installed. Definition of what constitutes
missing hardwa.re is completely device-specific.

-250 Mass storage error

Indicates that a mass storage error occurred. This error messa.ge should be used when the
device cannot detect the more specific errors described for errors -251 through -259.

-251 Missing mass storage

Indicates that a legal program command or query could not be executed because of missing
mass storage; for example, an option that was not installed. Definition of what constitutes
missing mass storage is device-specific.

Messages-7

-252 Missing media

Indicates tha.t a legal program command or query could not be esecuted because of a
missing media; for example, no disk. The definition of what constitutes missing media is
device-specific.

-253 Corrupt media

Indicates that a legal program command or query could not be executed because of corrupt
media; for esample, bad disk or wrong format. The definition of what constitutes corrupt
media is device-specific.

-254 Media full

Indicates that a. lega. program command or query could not be executed because the media
was full; for example, there is no room on the disk. The definition of what constitutes a full
media is device-specific.

-255 Directory full

Indicates that a legal program comma.nd or query could not be executed because the media
directory was full. The definition of what constitutes a full media directory is device-specific.

-256 File name not found

Indicates that a legal program command or query could not be executed because the file name
on the device media was not found; for example, an attempt was made to read or copy a
nonexistent file. The definition of what constitutes a file not being found is device-specific.

-257 File name error

Indicates that a legal program command or query could not be esecuted because the file name
on the device media. was in error: for example, an attempt was made to copy to a duplicate
file name. The definition of what constitutes a file name error is device-specific.

-258 Media protected

Indicates that a legal program command or query could not be executed because the media
was protected; for example, the write-protect tab on a disk was present. The definition of
what constitutes protected media is device-specific.

-260 Expression error

Indicates that an expression program data element related error occurred. This error message
should be used when the device cannot detect the more specific errors described for errors
-261 through -269.

-261 Math error in expression

Indicates that a syntactically legal expression program data element could not be executed
due to a math error; for example, a divide-by-zero was attempted. The definition of math
error is device-specific.

Messages-8

-270 Macro error

Indicates that a macro-related esecution error occurred. This error massage should be used
when the device cannot detect the more specific errors described for errors -271 through
-279.

-271 Macro syntax error

Indicates that a syntactically legal macro program data sequence, according to IEEE 488.2,
10.7.2, could not be executed due to a syntax error within the macro definition (see IEEE
488.2, 10.~3.)

-272 Macro execution error

Indicates that a syntactically legal ma.cro program data sequence could not be executed due to
some error in the macro definition [see IEEE 488.2, 10.7.6.3.)

-273 Illegal macro label

Indicates that the ma.cro label defined in the *DMC command was a legal string syntax but
could not be accepted by the device (see IEEE 488.2, 10.7.3 and 10.7X.2); for example, the
label was too long, the same as a common command header, or contained invalid header
syntax.

-274 Macro parameter error

Indicates that the macro definition improperly used a macro parameter placeholder (see IEEE
488.2, 10.7.3).

-275 Macro definition too long

Indicates tha.t a syntactically legal macro program data sequence could not be executed
because the string or block contents were too long for the device to handle (see L?L?ZE 488.2,
10.7.6.1).

-276 Macro recursion error

Indicates that a syntactically legal macro program data sequence could not be executed
because the device found it to be recursive (see IEEE 488.2, 10.7.6.6).

-277 Macro redefinition not allowed

Indicates that a syntactically legal macro label in the *DMC command could not be executed
because the ma.cro label was a.lready defined (see IEEE 488.2, 10.7.6.4).

-278 Macro header not found

Indicates that a syntactically legal macro label in the *GMC? query could not be executed
because the header was not previously defined.

Messages-9

-280 Program error

Indicates that a downloaded program-related execution error occurred. This error message
should be used when the device cannot detect the more specific errors described for errors
-281 through -289.

Note
I

)QI

A downloaded progra.m is used to add algorithmic capability to a device. The
syntax used in the program and the mechanism for downloading a program is
device-specific.

-281 Cannot create program

Indicates that an attempt to create a program was unsuccessful. A reason for the failure
might include not enough memory.

-282 Illegal program name

The name used to reference a program was invalid; for example, redefining an existing
program, deleting a nonexistent program, or in general, referencing a nonexistent program.

-283 Illegal variable name

An attempt was made to reference a nonexistent variable in a program;

-284 Program currently running

Certain operations dealing with programs may be illegal while the program is running; for
example, deleting a running program might not be possible.

-285 Program syntax error

Indicates that a syntax error appears in a downloaded program. The syntax used when
parsing the downloaded program is device-specific.

-286 Program runtime error

Messages-10

Query Errors [-499, -400]
An < error/event number > in the range [-499, -400] indicates that the output queue
control of the instrument has detected a problem with the message exchange protocol
described in IEEE 488.2, chapter 6. The occurrence of any error in this class should cause
the query error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1) to be set.
These errors correspond to message exchange protocol errors described in IEEE 488.2, section
6.5. One of the following is true:

n An attempt is being made to read data from the output queue when no output is either
present or pending;

H Data in the output queue has been lost.

Events that generate query errors shall not generate command errors, execution errors, or
device-specific errors; see the other error definitions in this section.

-400 Query error

This is the general query error for devices that cannot detect more specific errors. This code
indicates only that a Query Error as defined in IEEE 4M.2, 11.5.1.1.7 and 6.3 has occurred.

-410 Query INTERRUPTED

Indicates that a condition ca.using an INTERRUPTED Q uer error occurred (see IEEE 488.2,y
6.3.2.3); for example, a query followed by DAB or GET before a response was completely sent.

-420 Query UNTERMINATED

Indica.tes that a condition causing an UNTERMINATED Query error occurred (see IEEE
488.2, G.3.2.2); for example, the device was a.ddressed to talk a.nd an incomplete program
message was received.

-430 Query DEADLOCKED

Indica.tes that a condition causing a DEADLOCKED Query error occurred (see IEEE 488.2,
6.3.1.7); for example, both input buffer and output buffer are full and the device cannot
continue.

-440 Query UNTERMINATED after indefinite respouse

Indicates tha.t a query was received in the same program message after a query requesting an
indefinite response was executed (see IEEE 488.2, 6.5.7.5.7.)

Messages-11

